**************************************************************** this file is deprecated - see *.md version of this file **************************************************************** blast2dem: This tool can reads billion of LIDAR points from the LAS/LAZ format, triangulates them a seamless TIN, and rasters the TIN onto a DEM that can optionally be tiled. The output is either in BIL, ASC, IMG, XYZ, DTM, TIF, PNG or JPG format. The color ramps can be inverted with '-invert_ramp'. For BIL, ASC, IMG, DTM, and XYZ output one typically stores the actual '-elevation', the '-slope, or '-intensity' values whereas the TIF, PNG, and JPG formats are usually used for a '-hillshade', '-gray', or '-false' coloring, or for the '-rgb' raster. The particular range of values to be color mapped can be clamped using '-set_min_max 10 100' or their range computed with '-compute_min_max'. The color ramps can be inverted with '-invert_ramp'. This is part of the BLAST extension pack of LAStools that is built on streaming TINs via spatial finalization & streaming Delaunay. Please license from info@rapidlasso.de before you use blast2dem commercially. By default the generated raster is sized based on the extend of the bounding box. If the LAS/LAZ file was generated using lastile, its extend can be set to that of the tile using the '-use_tile_bb' option. Any lastile-generated buffer that the tile may have had is then not rastered. This allows to avoid boundary artifacts and yet create matching tiles in parallel. It is also possible to define the raster extend with setting '-ll min_x min_y' and '-ncols 512' and '-nrows 512'. Automatically a KML file is generated to allow the resulting DEM to be displayed inside Google Earth (for TIF/PNG/JPG). In case the LAS/LAZ file contains projection information (i.e. a VLR with geokeys) this is used for georeferencing the KML file. It is also possible to provide the georeferencing information in the command-line. By default triangles whose edges are longer than 100 meters are not rasterized. This value can be changed with '-kill 200'. The value is always assumed to be meters and will be multipled with 3.28 for LAS/LAZ files where x and y are known to be in feet. For updates check the website or join the LAStools mailing list. https://rapidlasso.de/ http://lastools.org/ http://groups.google.com/group/lastools/ http://twitter.com/lastools/ http://facebook.com/lastools/ http://linkedin.com/groups?gid=4408378 Martin @lastools **************************************************************** example with LAZ file from the .\lastools\data folder: >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.asc -v >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.bil -v -step 0.5 >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.bil -v -nbits 16 >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.png -utm 17T -v -hillshade >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.png -utm 17T -v -hillshade -light 0 0 1 >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.png -utm 17T -v -gray >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.png -v -hillshade -nrows 200 -ncols 100 >> blast2dem -i ..\data\TO_core_last_zoom.laz -o dem.png -v -hillshade -nrows 200 -ncols 100 -ll 630300 4834550 example usage: >> blast2dem -i *.las -merged -keep_class 2 8 -o merged.asc combines the ground points of all LAS files that match *.las, rasters them seamlessly with step size 1, and stores the combined DEM in ASC format. >> blast2dem -i *.las -oasc rasters the elevations of all LAS files *.las with step size 1 and stores each resulting DEM in ASC format. >> blast2dem -i *.laz -opng -utm 17T -step 2.5 -hillshade rasters the hillside-shaded elevations of all LAZ files *.laz with step size 2.5 and stores the resulting DEM in PNG format and with it a KML file that geo-references each PNG in GE with UTM zone 17T. >> blast2dem -i huge_lidar.las -o dem.asc -step 2 -keep_class 2 creates a temporary TIN from all points in the LAS file 'lidar.las' that are classified as ground, rasters the elevation values of the resulting TIN onto a grid with step size 2, and stores the resulting DEM in ASC format. >> blast2dem -i lidar.las lidar2.las lidar3.las -hillshade -opng -step 0.5 creates a hillside-shaded DEM with step size 0.5 units for each of the 3 LAS files 'lidar1.las', 'lidar2.las', and 'lidar3.las' and stores the result in PNG format. >> blast2dem -i lidar.las -o dem.tif -first_only -gray -step 2 creates a gray-scale elevation colored DEM of the elevations of lidar.las with step size 2 in TIF format. >> blast2dem -i lidar.las -o dem.png -first_only -false -step 2 -utm 14T same as above but with false elevation coloring and output of a KML file that georeferences the PNG file in Google Earth other commandline arguments are -kill 50 : do not raster triangles with edges longer than 50 units -step 2 : raster with stepsize 2 (the default is 1) -nrows 512 : raster at most 512 rows -ncols 512 : raster at most 512 columns -ll 300000 600000 : start rastering at these lower left x and y coordinates -nodata -9999 : use -9999 as the nodata value in the BIL/ASC format -intensity : raster intensities instead of elevations -hillshade : color the image with hillside shading -gray : gray-scale based on elevation/intensity (used with PNG/TIF/JPG) -scale 2.0 : multiply all elevation values by 2.0 before rastering -float_precision 0.1 : sets output float precision (used with ASC/BIL/TIF) -nbits 32 : use 32 bits to represent the elevation (mainly used with BIL format) -light 1 1 3 : change the direction of the light vector for hillside shading -utm 12T : use UTM zone 12T to spatially georeference the raster -sp83 CO_S : use the NAD83 Colorado South state plane for georeferencing -sp27 SC_N : use the NAD27 South Carolina North state plane -longlat : geometric coordinates in longitude/latitude order -latlong : geometric coordinates in latitude/longitude order -wgs84 : use the WGS-84 ellipsoid -wgs72 : use the WGS-72 ellipsoid -nad83 : use the NAD83 ellipsoid -nad27 : use the NAD27 ellipsoid -survey_feet : use survey feet -feet : use feet -meter : use meter -elevation_surveyfeet : use survey feet for elevation -elevation_feet : use feet for elevation -elevation_meter : use meter for elevation -tiling_ns crater 500 : create a tiling of DEMs named crater with tiles of size 500 -tm 609601.22 0.0 meter 33.75 -79 0.99996 -tm 1804461.942257 0.0 feet 0.8203047 -2.1089395 0.99996 -lcc 609601.22 0.0 meter 33.75 -79 34.33333 36.16666 -lcc 1640416.666667 0.0 surveyfeet 47.000000 -120.833333 47.50 48.733333 -ellipsoid 23 : use the WGS-84 ellipsoid (do -ellipsoid -1 for a list of ellipsoids) for more info: C:\lastools\bin>blast2dem -h Filter points based on their coordinates. -keep_tile 631000 4834000 1000 (ll_x ll_y size) -keep_circle 630250.00 4834750.00 100 (x y radius) -keep_xy 630000 4834000 631000 4836000 (min_x min_y max_x max_y) -drop_xy 630000 4834000 631000 4836000 (min_x min_y max_x max_y) -keep_x 631500.50 631501.00 (min_x max_x) -drop_x 631500.50 631501.00 (min_x max_x) -drop_x_below 630000.50 (min_x) -drop_x_above 630500.50 (max_x) -keep_y 4834500.25 4834550.25 (min_y max_y) -drop_y 4834500.25 4834550.25 (min_y max_y) -drop_y_below 4834500.25 (min_y) -drop_y_above 4836000.75 (max_y) -keep_z 11.125 130.725 (min_z max_z) -drop_z 11.125 130.725 (min_z max_z) -drop_z_below 11.125 (min_z) -drop_z_above 130.725 (max_z) -keep_xyz 620000 4830000 100 621000 4831000 200 (min_x min_y min_z max_x max_y max_z) -drop_xyz 620000 4830000 100 621000 4831000 200 (min_x min_y min_z max_x max_y max_z) Filter points based on their return number. -first_only -keep_first -drop_first -last_only -keep_last -drop_last -keep_middle -drop_middle -keep_return 1 2 3 -drop_return 3 4 -keep_single -drop_single -keep_double -drop_double -keep_triple -drop_triple -keep_quadruple -drop_quadruple -keep_quintuple -drop_quintuple Filter points based on the scanline flags. -drop_scan_direction 0 -scan_direction_change_only -edge_of_flight_line_only Filter points based on their intensity. -keep_intensity 20 380 -drop_intensity_below 20 -drop_intensity_above 380 -drop_intensity_between 4000 5000 Filter points based on their classification. -keep_class 1 3 7 -drop_class 4 2 -drop_synthetic -keep_synthetic -drop_keypoint -keep_keypoint -drop_withheld -keep_withheld Filter points based on their user data. -keep_user_data 1 -drop_user_data 255 -keep_user_data_between 10 20 -drop_user_data_below 1 -drop_user_data_above 100 -drop_user_data_between 10 40 Filter points based on their point source ID. -keep_point_source 3 -keep_point_source_between 2 6 -drop_point_source 27 -drop_point_source_below 6 -drop_point_source_above 15 -drop_point_source_between 17 21 Filter points based on their scan angle. -keep_scan_angle -15 15 -drop_abs_scan_angle_above 15 -drop_scan_angle_below -15 -drop_scan_angle_above 15 -drop_scan_angle_between -25 -23 Filter points based on their gps time. -keep_gps_time 11.125 130.725 -drop_gps_time_below 11.125 -drop_gps_time_above 130.725 -drop_gps_time_between 22.0 48.0 Filter points based on their wavepacket. -keep_wavepacket 0 -drop_wavepacket 3 Filter points with simple thinning. -keep_every_nth 2 -keep_random_fraction 0.1 -thin_with_grid 1.0 Transform coordinates. -translate_x -2.5 -scale_z 0.3048 -rotate_xy 15.0 620000 4100000 (angle + origin) -translate_xyz 0.5 0.5 0 -translate_then_scale_y -0.5 1.001 -clamp_z_below 70.5 -clamp_z 70.5 72.5 Transform raw xyz integers. -translate_raw_z 20 -translate_raw_xyz 1 1 0 -clamp_raw_z 500 800 Transform intensity. -scale_intensity 2.5 -translate_intensity 50 -translate_then_scale_intensity 0.5 3.1 -clamp_intensity 0 255 -clamp_intensity_above 255 Transform scan_angle. -scale_scan_angle 1.944445 -translate_scan_angle -5 -translate_then_scale_scan_angle -0.5 2.1 Change the return number or return count of points. -repair_zero_returns -set_return_number 1 -change_return_number_from_to 2 1 -set_number_of_returns 2 -change_number_of_returns_from_to 0 2 Modify the classification. -set_classification 2 -change_classification_from_to 2 4 -classify_z_below_as -5.0 7 -classify_z_above_as 70.0 7 -classify_z_between_as 2.0 5.0 4 -classify_intensity_above_as 200 9 -classify_intensity_below_as 30 11 Modify the user data. -set_user_data 0 -change_user_data_from_to 23 26 Modify the point source ID. -set_point_source 500 -change_point_source_from_to 1023 1024 -quantize_Z_into_point_source 200 Transform gps_time. -translate_gps_time 40.50 -adjusted_to_week -week_to_adjusted 1671 Transform RGB colors. -scale_rgb_down (by 256) -scale_rgb_up (by 256) Supported LAS Inputs -i lidar.las -i lidar.laz -i lidar1.las lidar2.las lidar3.las -merged -i *.las - merged -i flight0??.laz flight1??.laz -i terrasolid.bin -i esri.shp -i nasa.qi -i lidar.txt -iparse xyzti -iskip 2 (on-the-fly from ASCII) -i lidar.txt -iparse xyzi -itranslate_intensity 1024 -lof file_list.txt -stdin (pipe from stdin) -rescale 0.01 0.01 0.001 -rescale_xy 0.01 0.01 -rescale_z 0.01 -reoffset 600000 4000000 0 Supported Raster Outputs -o dtm.asc -o dsm.bil -o canopy.flt -o dtm.dtm -o density.xyz -o intensity.img -o hillshade.png -o slope.tif -o false_color.jpg -oasc -obil -oflt -oimg -opng -odtm -otif -ojpg -oxyz -nil -odir C:\data\hillshade (specify output directory) -odix _small (specify file name appendix) -ocut 2 (cut the last two characters from name) LAStools BLAST (by info@rapidlasso.de) version 140301 (unlicensed) usage: blast2dem -i huge_lidar.las -o dem.asc -step 2 blast2dem -i huge_lidar.laz -o dem.bil -keep_class 2 blast2dem -i *.las -oasc -step 0.5 -intensity blast2dem -i huge_lidar.las -o lidar.png -hillshade blast2dem -i *.laz -opng -hillshade -light 1 1 1 -last_only blast2dem -i huge_lidar.laz -ll 640000 4320000 -ncols 10000 -nrows 10000 -o dem.asc blast2dem -i huge_lidar.las -keep_class 2 8 3 -o dem.tif blast2dem -h --------------- if you find bugs let me (info@rapidlasso.de) know