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Content by file structure 

Table 1 — Overview Content by file structure 

Public Header Block (Clause 6.3) 
 

Variable Length Records (VLRs) (Clause 6.4) including the LAZ Special VLR 
 

Compressed Data Block 
(Clause 11) 

Field Chunk table start position (Clause 11.5) 
 

Chunks (Clause 
11.7) 

Chunk 
1 

1st record, uncompressed, split into Items 
(Clause 7.2) 
 

Compressed records, optionally split into 
layers (Clause 11.7) 
 

Chunk 
2 

1st record, uncompressed, split into Items 
(Clause 7.2) 
 

Compressed records, optionally split into 
layers (Clause 11.7) 
 

Chunks n … 
 

Chunk table (Clause 11.6) 
 

Extended Variable Length Records (EVLRs) (Clause 6.5) 
 

Field Chunk table start position (EOF) (Clause 11.5) 
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LAZ Specification 

1. Scope 

This document specifies the LAZ 1.4 standard. This standard is provided by the open-source 
implementation of the LASzip library at https://github.com/LASzip/LASzip. The relevant version of 
the LASzip library is Release 3.4.3, released on Nov 11, 2019, and Release 3.4.4, released on April 
17, 2024, which are identical in terms of specification. 

LAZ 1.4 is based on the LAS 1.4 format, and only the LAZ 1.4 format using the LAS 1.4 format is 
specified. 

Legacy support for LAS 1.0 to 1.3 formats exists (and can be read and written by the LASzip 
software), but is only covered as a short overview in this document, and not specified. 

Additionally, only the current compressor formats are specified (although the LASzip software still 
supports the deprecated legacy compression formats.) 

NOTE:  For completeness, the LAS 1.4 fields and LAS structures, which are by design also 
part of the LAZ format, are described in this document too, as a shortened version of the LAS 1.4 
standard as specified by The American Society for Photogrammetry & Remote Sensing, but this 
doesn’t intend to (re-)define them. 

2. Normative references 

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) 
applies. 

The American Society for Photogrammetry & Remote Sensing, LAS Specification 1.4 — R15, 
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf 

3. Terms and definitions 

The word “shall” is used to indicate a requirement to be strictly followed to conform to this 
document. 

Additionally, the following additional terms and definitions apply. 

3.1. Data types 

The following data types are used in the LAZ format definition. They are conformant to the 1999 
ANSI C Language Specification (ANSI/ISO/IEC 9899:1999 (“C99”)). 

— char (1 byte)  
— unsigned char (1 byte)  
— short (2 bytes)  
— unsigned short (2 bytes)  
— long (4 bytes)  
— unsigned long (4 bytes)  
— long long (8 bytes)  
— unsigned long long (8 bytes)  
— float (4 byte IEEE floating point format)  

https://github.com/LASzip/LASzip
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
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— double (8 byte IEEE floating point format)  
— string (null-terminated variable series of 1 byte characters, ASCII encoded)  

Note: Fixed-length char arrays will not be null-terminated if all bytes are utilized. 

4. Conventions 

Most algorithms are given as pseudocode, using the following conventions: 

— assignments are done using :=  
— the equality operator is =  
— terms are evaluated from left to right, which might be relevant, for example, in case that there is 

more than one function call in an assignment  
— blocks, for example the statements that follow an if-then-statement, are indented  
— return exits a function  
— arrays are, when explicitly indexed, starting with index 0  
— // marks a comment 

For use in, for example, integer divisions, “rounding towards 0” is defined as: 

round_towards_0(x): = {
 ⌊x⌋ for x ≥ 0
 ⌈x⌉ for x < 0
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5. LAZ Description 

5.1. Overview 

LAZ uses a lossless compression to compress a LAS file. The LAZ 1.4 format is based on LAS 1.4, 
as specified in the LAS Specification 1.4 — R15 by The American Society for Photogrammetry 
Remote Sensing. 

LAZ keeps the general structure of the LAS format, but compresses the point data block. The format 
of all other LAS 1.4 sections, for example the header format, are not modified, although some 
header fields got slightly changed. 

The specific meaning of the (uncompressed) LAS point data fields is not changed by the LAZ 
format. 

Point data is stored in chunks, where each chunk can be decompressed independently from other 
chunks, which allows random-access in granularity of the chunk size. 

LAZ 1.4 added support for LAS 1.4 point formats 6 to 10, and for those, LAZ subdivides chunks 
further into layers, each containing a subset of fields, allowing random access to specific fields 
without having to decompress all other fields. 

The default file extension for a LAZ file is “laz”, as compared to “las” for a LAS file. 

5.2. LAZ Developer 

LASzip was developed between 2007 and 2010 by rapidlasso founder and lidar pioneer Dr. Martin 
Isenburg. Martin initially developed LASzip to support his lidar processing software LAStools. In 
2011, he converted the implementation from an academic prototype to industry-grade production 
code and made LASzip open source. In November 2011, Martin introduced LASzip to the audience 
at ELMF in Salzburg, Austria (paper and video). The innovation quickly became very popular. 
LASzip became winner of the “2012 Geospatial World Forum Technology Innovation Award in 
LiDAR Processing” and runner-up for the “most innovative product at INTERGEO 2012”. Over the 
years, LASzip has become the industrial de-facto standard for LiDAR compression and is supported 
by virtually all existing point-cloud processing tools. 

Beyond being a gifted software developer, Martin was very aware of our impact on the world. He 
had great respect for nature and the environment. He cared not only about technology, but also 
about the potential of technology to improve our planet and the human condition. Martin was talking 
about reducing the carbon footprint of computing before nearly anyone else. The carbon footprint he 
saved by giving away LASzip will be a lasting impact. Martin made outstanding contributions to the 
LiDAR community, and he was a source of inspiration to many. This will not be forgotten. Martin 
passed away on September 7, 2021. May he rest in peace. 

  

https://lidarmag.com/2023/02/14/tools-for-a-better-tomorrow/
https://lidarmag.com/2023/02/14/tools-for-a-better-tomorrow/
https://rapidlasso.de/
https://www.cs.unc.edu/~isenburg/lastools/download/laszip
https://www.youtube.com/watch?v=A0s0fVktj6U
https://lidarmag.com/2023/02/14/tools-for-a-better-tomorrow/
https://lidarmag.com/2023/02/14/tools-for-a-better-tomorrow/
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6. LAZ file structure 

6.1. Overview 

Just as the LAS format, the LAZ format contains binary data consisting of a public header block 
(Clause 6.3), any number of (optional) Variable Length Records (VLRs) (Clause 6.4), the 
(compressed) Point Data Records (Clause 11), and any number of (optional) Extended Variable 
Length Records (EVLRs) (Clause 6.5). All data is in little-endian format. 

The public header block contains generic data such as point numbers and point data bounds, and is 
mostly unchanged compared to the LAS format, including the file identifier. Note that only the LAS 
1.4 header format is allowed for the LAZ 1.4 format. Legacy information for older LAS header 
formats is summarized in Clause 15. 

The Variable Length Records (VLRs) contain variable types of data including projection information, 
metadata, waveform packet information, and user application data. They are limited to a data 
payload of 65,535 bytes. 

LAZ adds a special VLR that contains details about the compression. The presence of this special 
VLR identifies the file as a LAZ file. 

The central element of a LAZ file is the compressed Point Data Block, which contains the 
compressed data (e.g. the compressed point records). This block differs significantly from the 
uncompressed data points that LAS stores at this location. 

The Extended Variable Length Records (EVLRs) are again a standard LAS structure, and not 
modified. They allow a higher payload than VLRs and can be appended to the end of a LAS file, 
which for example allows adding projection information to a LAS file without having to rewrite the 
entire file. 

A LAS file that contains point record types 4, 5, 9, or 10 could potentially contain one block of 
waveform data packets that is stored as the payload of an Extended Variable Length Record 
(EVLR). This is both deprecated in LAS 1.4 and not supported by LAZ 1.4, so any Waveform Data 
Packets have to be stored externally (e.g. according to the LAS standard in a .WDP-file with the 
same name). 

Optionally, the last 8 bytes of a LAZ file can contain an 8-byte Pointer to the LAZ Chunk table, which 
can be used if the data is written to a non-seekable medium. 

Table 2 — LAZ File Format Definition 

Public Header Block 
 

Variable Length Records (VLRs) 
 

Compressed Data Block 
 

Extended Variable Length Records (EVLRs), cannot contain internal waveform data 
 

Chunk table start position (EOF) (optional) 
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6.2. Differences between LAS and LAZ files 

As an overview, the main differences between a LAZ file and a LAS file are: 

— a value of 128 is added to the point record format (field Point Data Record Format in the LAZ 
header), i.e. the values 128 to 138 in that field correspond to the LAS record formats 0 to 10. 
This is to prevent a program that reads LAS data (but is unaware of LAZ data) to accidently read 
compressed data as uncompressed data, as by design, the file format is otherwise compatible.  

— in a LAZ file, internally stored waveform data (in an EVLR) is not supported, and has to use an 
auxiliary file (e.g. a .WDP file as defined in the LAS specification). Note: internally stored 
waveform data is also deprecated in LAS 1.4.  

— an additional LAZ specific VLR with information about the compression is added.  
— the compressed data block itself, replacing the original LAS point data. It starts at the same 

position in the file as the LAS point data, namely the field Offset to point data as given in the 
LAZ header.  

— optionally a field Chunk table start position (EOF) at the end of the file.  

6.3. LAZ Header 

The LAZ 1.4 header format is identical to the LAS 1.4 header format. Most fields are unchanged 
compared to the LAS 1.4 header. Fields that are modified or have a different meaning are marked in 
the table as “Modified from LAS”. 

NOTE:  The specific meaning of the fields is identical to the LAS 1.4 specification, unless 
modifications are specified. LAZ 1.4 doesn’t intend to redefine these fields. Their description is here 
mostly a slightly shortened description of the LAS 1.4 specification. 

Table 3 — LAZ Header Format Definition 

Field Name Format Size Required 
Modified from 
LAS 

File Signature (“LASF”) char[4] 4 bytes *  

File Source ID unsigned short 2 bytes *  

Global Encoding unsigned short 2 bytes * * 

Project ID — GUID Data 1 unsigned long 4 bytes   

Project ID — GUID Data 2 unsigned short 2 bytes   

Project ID — GUID Data 3 unsigned short 2 bytes   

Project ID — GUID Data 4 unsigned char[8] 8 bytes   

Version Major unsigned char 1 byte *  

Version Minor unsigned char 1 byte *  

System Identifier char[32] 32 bytes *  

Generating Software char[32] 32 bytes *  

File Creation Day of Year unsigned short 2 bytes *  

File Creation Year unsigned short 2 bytes *  

Header Size unsigned short 2 bytes *  

Offset to Point Data unsigned long 4 bytes * * 

Number of Variable Length Records unsigned long 4 bytes *  

Point Data Record Format unsigned char 1 byte * * 

Point Data Record Length unsigned short 2 bytes *  

Legacy Number of Point Records unsigned long 4 bytes *  

Legacy Number of Point by Return unsigned long[5] 20 bytes *  

X Scale Factor double 8 bytes *  

Y Scale Factor double 8 bytes *  

Z Scale Factor double 8 bytes *  
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Field Name Format Size Required 
Modified from 
LAS 

X Offset double 8 bytes *  

Y Offset double 8 bytes *  

Z Offset double 8 bytes *  

Max X double 8 bytes *  

Min X double 8 bytes *  

Max Y double 8 bytes *  

Min Y double 8 bytes *  

Max Z double 8 bytes *  

Min Z double 8 bytes *  

Start of Waveform Data Packet 
Record 

unsigned long long 8 bytes * * 

Start of First Extended Variable 
Length Record 

unsigned long long 8 bytes *  

Number of Extended Variable Length 
Records 

unsigned long 4 bytes *  

Number of Point Records unsigned long long 8 bytes *  

Number of Points by Return 
unsigned long 
long[15] 

120 
bytes 

*  

Any field in the Public Header Block that is not required and is not used must be zero filled. 

File Signature: The four characters “LASF”, identical to the LAS specification. These four 
characters can be checked by user software as a quick look initial determination of file type. 

File Source ID: This field should be set to a value ranging from 0 to 65,535. If this file was derived 
from an original flight line, this is often the flight line number. A value of zero is interpreted to mean 
that an ID has not been assigned, which is the norm for a LAS file resulting from an aggregation of 
multiple independent sources (e.g., a tile merged from multiple swaths). Note that this scheme 
allows a LIDAR project to contain up to 65,535 unique sources. Example sources can be an original 
flight line or a setup identifier for static systems. 

Global Encoding: This is a bit field used to indicate certain global properties about the file, defined 
as: 

Table 4 — Encoding of bit-field “Global Encoding” 

Bits Field Name Description 

0 GPS Time Type 

The meaning of GPS Time in the point records. If this bit is not set, the 
GPS time in the point record fields is GPS Week Time (the same as 
versions 1.0 through 1.2 of LAS). Otherwise, if this bit is set, the GPS 
Time is standard GPS Time (satellite GPS Time) minus 1 x 

109 (Adjusted Standard GPS Time). The offset moves the time back to 
near zero to improve floating point resolution. The origin of standard 
GPS Time is defined as midnight of the morning of January 6, 1980. 

1 
Waveform Data 
Packets Internal 

Not supported by LAZ, shall be unset. If this bit is set in a LAS file, the 
waveform data packets are located within the file. (Note that this bit is 
mutually exclusive with bit 2.) Note: this is also deprecated in LAS 1.4. 

2 
Waveform Data 
Packets External 

If this bit is set, the waveform data packets are located externally in an 
auxiliary file with the same base name as this file but the extension 
*.wdp. (Note that this bit is mutually exclusive with bit 1) 
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Bits Field Name Description 

3 

Return numbers 
have been 
synthetically 
generated 

If this bit is set, the point return numbers in the point data records have 
been synthetically generated. This could be the case, for example, when 
a composite file is created by combining a First Return File and a Last 
Return File, or when simulating return numbers for a system not directly 
supporting multiple returns. 

4 WKT 

If set, the Coordinate Reference System (CRS) is WKT. If not set, the 
CRS is GeoTIFF. It should not be set if the file writer wishes to ensure 
legacy compatibility (which means the CRS must be GeoTIFF). Refer to  
the LAS specification for details about these formats. 

5:15 Reserved Shall be set to zero 

NOTE:  The option “Waveform Data Packets Internal” (bit 1) is not supported by LAZ 1.4, so 
the field differs slightly from the LAS 1.4 header. 

Project ID (GUID data): The four fields that comprise a complete Globally Unique Identifier (GUID) 
are now reserved for use as a Project Identifier (Project ID). The field remains optional. The time of 
assignment of the Project ID is at the discretion of processing software. The Project ID should be 
the same for all files that are associated with a unique project. By assigning a Project ID and using a 
File Source ID (defined above), every file within a project and every point within a file can be 
uniquely identified, globally. 

Version Number: The version number consists of a major and minor field of the LAS specification 
used, i.e. for LAZ 1.4 (and LAS 1.4), the major field shall be 1 and the minor field shall be 4. 

System Identifier: Identifies the hardware type or software operation that generated the data, as 
defined by the LAS specification: 

Table 5 — System Identifier 

Generating Agent System ID 

Hardware system 
String identifying hardware (e.g. “ALTM 1210”, “ALS50”, “LMS-
Q680i” etc.) 

Merge of one or more files “MERGE” 

Modification of a single file “MODIFICATION” 

Extraction from one or more files “EXTRACTION” 

Reprojection, rescaling, 
warping, etc. 

“TRANSFORMATION” 

Some other operation “OTHER” or a string up to 32 characters identifying the operation 

Generating Software: This information is ASCII data describing the generating software itself. If the 
character data is less than 32 characters, the remaining data must be null. 

File Creation Day of Year: Day, expressed as an unsigned short, on which this file was created. 
Day is computed as the Greenwich Mean Time (GMT) day. January 1 is considered day 1. 

File Creation Year: The year, expressed as a four-digit number, in which the file was created. 

Header Size: The size, in bytes, of the Public Header Block itself. For LAZ 1.4 (and LAS 1.4) in the 
current revision, this size is 375 bytes. The Public Header Block may not be extended by users. 

Offset to point data: Actual number of bytes from the beginning of the file to the start of the 
compressed data block. Must be updated if any software adds or removes data to or from the 
Variable Length Records. Note: this differs from a LAS file, where it is the actual number of bytes 
from the beginning of the file to the first field of the first point record data field. 
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Number of Variable Length Records: The number of VLRs. 

Point Data Record Format: The type of point data records that are contained in the file. LAS 1.4 
defines types 0 through 10, LAZ adds the value 128 to it (i.e. sets bit 7), so uses types 128 to 138 to 
mean LAS types 0 through 10. LAZ additionally stores details about the point type in the LAZ 
Special VLR. The information in that VLR has to match the Point Data Record Format. 

Point Data Record Length: The size, in bytes, of the uncompressed Point Data Record. All Point 
Data Records within a single file must be the same type and hence the same length. If the specified 
size is larger than implied by the point format type (e.g. 32 bytes instead of 28 bytes for type 1) the 
remaining bytes are user-specific “extra bytes”. The format and meaning of such “extra bytes” can 
(optionally) be described with an Extra Bytes VLR (as specified in the LAS specification). LAZ 
compresses such extra bytes as single, independent bytes, i.e. does not change compression 
based on the description in the Extra Bytes VLR. 

Legacy Number of point records: This field contains the total number of point records within the 
file if the file is maintaining legacy compatibility, and the number of points is no greater than 

UINT32_MAX ( 232 − 1 ), and the Point Data Record Format is less than 6. It must be zero 
otherwise. 

Legacy Number of points by return: These fields contain an array of the total point records per 
return if the file is maintaining legacy compatibility, the number of points is no greater than 

UINT32_MAX ( 232 − 1 ), and the Point Data Record Format is less than 6. Otherwise, each 
member of the array must be set to zero. The first value will be the total number of records from the 
first return, the second contains the total number for return two, and so on up to five returns.  

X, Y, and Z scale factors: The scale factor fields contain a double floating point value that is used 
to scale the corresponding X, Y, and Z long values within the point records. The corresponding X, Y, 
and Z scale factor must be multiplied by the X, Y, or Z point record value to get the actual X, Y, or Z 
coordinate. For example, if the X, Y, and Z coordinates are intended to have two decimal digits, then 
each scale factor will contain the number 0.01. 

X, Y, and Z offset: The offset fields should be used to set the overall offset for the point records. In 
general these numbers will be zero, but for certain cases the resolution of the point data may not be 
large enough for a given projection system. However, it should always be assumed that these 
numbers are used.  

For example, to compute a given X from the point record, the point record X is multiplied by the X 
scale factor, and then the X offset is added, and so on. I.e. Xcoordinate = (Xrecord ⋅ Xscale) + Xoffset , 
Ycoordinate = (Yrecord ⋅ Yscale) + Yoffset and Zcoordinate = (Zrecord ⋅ Zscale) + Zoffset . 

Max and Min X, Y, Z: The max and min data fields are the actual unscaled extents of the LAS point 
file data, specified in the coordinate system of the LAS data. 

Start of Waveform Data Packet Record: LAZ 1.4 does not support internally stored Waveform 
Data Packet Records, this value shall be 0 (which means no internally stored Waveform Data). Note 
that in a LAS file, this value provides the offset, in bytes, from the beginning of the LAS file to the 
first byte of the Waveform Data Package Record. 

Start of First Extended Variable Length Record: This value provides the offset, in bytes, from the 
beginning of the file to the first byte of the first EVLR. 

Number of Extended Variable Length Records: This field contains the current number of EVLRs. 
If there are no EVLRs this value is zero. 

Number of point records: This field contains the total number of point records in the file. 
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Number of points by return: These fields contain an array of the total point records per return. The 
first value will be the total number of records from the first return, the second contains the total 
number for return two, and so on up to fifteen returns. 

6.4. Variable Length Records (VLRs) 

The Public Header Block can be followed by any number of Variable Length Records (VLRs) so 
long as the total size does not make the start of the Compressed Data Block inaccessible by an 
unsigned long (“Offset to Point Data” in the Public Header Block). The number of VLRs is specified 
in the “Number of Variable Length Records” field in the Public Header Block. 

The format of the VLR is identical to the LAS format. 

The Variable Length Records must be accessed sequentially since the size of each variable length 
record is contained in the Variable Length Record Header. Each Variable Length Record Header is 
54 bytes in length, and optionally followed by Data of length given by “Record Length After Header”. 

Exactly one of the VLRs (not necessarily the first or last) is the special LAZ VLR, which contains 
additional information about the compression. The presence of this VLR identifies the file as a LAZ 
file. 

LAS 1.4 specifies several mandatory (and optional) VLRs. These requirements and the meaning of 
those VLRs transfer to a LAZ file (as a valid LAZ file is based on a valid LAS file), but are not 
repeated in this LAZ specification. Refer to the LAS specification for details. 

Table 6 — Variable Length Record 

Field Name Format Size Required 

Reserved unsigned short 2 bytes  

User ID char[16] 16 bytes * 

Record ID unsigned short 2 bytes * 

Record Length After Header unsigned short 2 bytes * 

Description char[32] 32 bytes  

Data  as given by “Record Length After Header”  

Reserved: This value must be set to zero for LAS standard records, and shall be zero or 43,707 
(0xAABB) for the special LAZ VLR. 

User ID: The User ID field is ASCII character data that identifies the user that created the variable 
length record. For a standard LAS file, the User ID must be registered with the LAS specification 
managing body, refer to the LAS specification. A LAZ file includes a special LAZ VLR, for which that 
value shall be “laszip encoded”. 

Record ID: The Record ID is dependent upon the User ID. There can be 0 to 65,535 Record IDs for 
every User ID. The LAS specification manages its own Record IDs (User IDs owned by the 
specification), otherwise Record IDs will be managed by the owner of the given User ID. Refer to 
the LAS specification for details. For the LAZ specific special LAZ VLR, the value shall be 22,204. 

Record Length After Header: The record length is the number of bytes for the record after the end 
of the standard part of the header. 

Description: Optional text description of the data. Any remaining unused characters must be null. 

Data: Optional content with length given by Record Length After Header. 
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6.5. Extended Variable Length Records (EVLRs) 

The Compressed Data Block can be followed by any number of EVLRs, which are identical to the 
LAS 1.4 specification. The EVLR is similar to a VLR, but can carry a larger payload, as the Record 
Length After Header field is 8 bytes instead of 2 bytes. The number of EVLRs is specified in the 
Number of Extended Variable Length Records field in the Public Header Block. The start of the 
first EVLR is at the file offset indicated by the Start of first Extended Variable Length Record in 
the Public Header Block. 

The Extended Variable Length Records must be accessed sequentially, since the size of each 
variable length record is contained in the Extended Variable Length Record Header. Each Extended 
Variable Length Record Header (i.e. without the optional payload data) is 60 bytes in length. 

Table 7 — Extended Variable Length Record 

Field Format Size Required 

Reserved unsigned short 2 bytes  

User ID char[16] 16 bytes * 

Record ID unsigned short 2 bytes * 

Record Length After 
Header 

unsigned long 
long 

8 bytes * 

Description char[32] 32 bytes  

Data  as given by “Record Length After 
Header” 

 

The fields are specified identically to those of the VLR, with the exception that Record Length After 
Header is a 64-bit value. 

As for the VLRs, any mandatory or optional EVLR and their content, as specified in the LAS 1.4 
specification, transfer to a LAZ file, but are not repeated in this LAZ specification. Refer to the LAS 
specification for details. 
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7. The LAZ Special VLR 

7.1. The LAZ Special VLR format 

For a LAZ file, exactly one of the VLR records has to be the LAZ Special VLR, which contains 
information about the compression in the Data field, and identifies the file as a LAZ file. The LAZ 
VLR shall contain the string “laszip encoded” in the field User Id and the value 22204 in the field 
Record Id, both of which are required to identify the VLR as the LAZ Special VLR. The field 
Reserved shall contain either the value 43707 (0xAABB) or 0. 

The special VLR shall be removed in a decompressed LAS file. 

The VLR contains a record of the following format in the Data field: 

Table 8 — LAZ Special VLR 

Field Name Format Size Required 

Compressor unsigned short 2 bytes * 

Coder unsigned short 2 bytes * 

Version Major unsigned char 1 byte * 

Version Minor unsigned char 1 byte * 

Version Revision unsigned short 2 bytes * 

Options unsigned long 4 bytes * 

Chunk Size unsigned long 4 bytes * 

Number of special EVLRs signed long long 8 bytes * 

Offset of special EVLRs signed long long 8 bytes * 

Number of Items unsigned short 2 bytes * 

Item records Array of “Item record” 6 bytes * Number of Items * 

Compressor: Defines the compressor and format of the LAZ Compressed Data Block and the 
Chunk Table, as specified in Clause 11. 

One of the values 

Table 9 — Field “Compressor” 

Value Description Restrictions 

0 No Compression Uncompressed Standard LAS file 

1 Pointwise compression only for point types 0 to 5 

2 Pointwise and chunked compression only for point types 0 to 5 

3 Layered and chunked compression only for point types 6 to 10 

No Compression: Indicates an uncompressed LAZ file, i.e. a LAS file with a LAZ VLR. 

Pointwise compression: The data is stored in a single chunk, and no chunk table is used. Only for 
LAS Point Data Record Formats 0 through 5. 

Pointwise and chunked compression: The data is stored using chunks, and a chunk table is 
used. Only for LAS Point Data Record Formats 0 through 5. 

Layered and chunked compression: The data is stored using chunks and layers, and a chunk 
table and layer tables are used. Only for LAS Point Data Record Formats 6 through 10. 

Coder: Identifies the coder. Shall be 0, for “Arithmetic coder”. 
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Version: The version number consists of a major, a minor and a revision field. They combine to 
form the number that indicates the format number of the current specification. 

Options: Bit field used to indicate certain options. It is defined as: 

Table 10 — Field “Options” 

Bits Field Name Description 

0 
LAS 1.4 
compatibility 
mode 

1: LAS Point Data Record Formats 6 to 10 have been stored as for LAS 
Point Data Record Formats 0 to 5 plus extra bytes, 0 otherwise. Shall be 
0 for LAZ 1.4 

1:31 Reserved Shall be set to zero 

LAS 1.4 compatibility mode: Shall be 0 for LAZ 1.4. Set to 1 if LAS Point Data Record Formats 6 
to 10 have been stored as LAS Point Data Record Formats 0 to 5 plus extra bytes in legacy LAZ 1.2 
or 1.3 files (but not LAZ 1.4 files). See Clause 15.2 for legacy information about this mode. 

Chunk Size: Number of points per chunk. At the beginning of each chunk, the compression and 
entropy data resets, so each chunk can be decompressed independently from other chunks, 

allowing random access in granularity of this chunk size. If 232 − 1 , adaptive chunking is used: the 
compressor can choose a different chunk size for each chunk (with a minimum size of 1), and for 
that mode, the actual chunk sizes are stored in the Chunk table, Clause 11.6. Adaptive chunking is 
only supported for LAS Point Data Record Formats 6 through 10 and deprecated LAS Point Data 
Record Formats 0 through 5. 

Number of special EVLRs: Reserved. Shall be -1, which means unused. 

Offset of special EVLRs: Reserved. Shall be -1, which means unused. 

Number of Items: Number of item records (that follow directly afterwards). 

7.2. Item records 

A LAZ file contains compressed LAS Point Data Records, and a LAS Point Data Record is 
considered to be built out of subpart, “items”. Each item is compressed separately and potentially 
with a different coder version. The Item records describe a list of Item types. The combined items 
shall match the Point Data Record Format and Point Data Record Length as declared in the LAZ 
Header. 

Table 11 — Item record 

Field Name Format Size Required 

Item Type unsigned short 2 bytes * 

Item Size unsigned short 2 bytes * 

Item Version unsigned short 2 bytes * 

Item Type: Type of the item, one of the following: 

Table 12 — Field “Item Type” 

Value Name Description 

0 Byte extra bytes that are appended to a LAS Point Data Record Format 0 to 5 

1 Short reserved, unsupported 

2 Integer reserved, unsupported 

3 Long reserved, unsupported 
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Value Name Description 

4 Floating point reserved, unsupported 

5 Double reserved, unsupported 

6 Point10 
LAS Point Data Record Format 0, containing the core fields that are shared 
between LAS Point Data Record Formats 0 to 5 

7 GPSTime11 
the GPS Time field that is added for LAS Point Data Record Formats 1, 3, 
4 and 5 

8 RGB12 
the R, G and B fields that are added for LAS Point Data Record Formats 2, 
3 and 5 

9 Wavepacket13 
the 7 fields for the Waveform packet that are added for LAS Point Data 
Record Formats 4 and 5 

10 Point14 
LAS Point Data Record Format 6, containing the core fields that are shared 
between LAS Point Data Record Formats 6 to 10 

11 RGB14 the R, G and B fields that are added for LAS Point Data Record Format 7 

12 RGBNIR14 
the R, G, B and NIR (near infrared) fields that are added for LAS Point 
Data Record Formats 8 and 10 

13 Wavepacket14 
the 7 fields for the Waveform packet that are added for LAS Point Data 
Record Formast 9 and 10 

14 Byte14 extra bytes that are appended to a LAS Point Data Record Format 6 to 10 

NOTE:  The number in the name, for example in “Point10”, refers to the LAS and LAZ 
version where that type got added. 

Item types 1 through 5 (Short, Integer, Long, Floating Point and Double) are reserved for future use 
and not supported yet. 

Item Size: Size in bytes of the item. The size for item types 6 to 13 is derived from the LAS 
standard, i.e. the size of the (uncompressed) fields those items cover. Item Types 0 to 5 and 14 
shall be multiples of their type size. This means that the allowed values are: 

Table 13 — Field “Item Size” 

Item Type Allowed Values 

Byte any 

Short multiple of 2 

Integer multiple of 4 

Long multiple of 8 

Floating point multiple of 8 

Double multiple of 8 

Point10 20 

GPSTime11 8 

RGB12 6 

Wavepacket13 29 

Point14 30 

RGB14 6 

RGBNIR14 8 

Wavepacket14 29 

Byte14 any 

The sum of the item size of all items shall match the Point Data Record Length in the LAZ Header. 
The combined item types together build the Point Data Record Format as specified in the LAZ 
Header. Any extra bytes are stored as item types “Byte” (for LAS Point Data Record Format 0 to 5) 
or “Byte14” (for LAS Point Data Record Format 6 to 10). 
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Valid item record combinations are therefore: 

Table 14 — Valid item combinations (to form a LAS Point Data Record Format) 

LAS Point Data Record Format Items 

0 Point10 (+ Byte) 

1 Point10 + GPSTime11 (+ Byte) 

2 Point10 + RGB12 (+ Byte) 

3 Point10 + GPSTime11 + RGB12 (+ Byte) 

4 Point10 + GPSTime11 + Wavepacket13 (+ Byte) 

5 Point10 + GPSTime11 + RGB12 + Wavepacket13 (+ Byte) 

6 Point14 (+ Byte14) 

7 Point14 + RBG14 (+ Byte14) 

8 Point14 + RBGNIR14 (+ Byte14) 

9 Point14 + Wavepacket14 (+ Byte14) 

10 Point14 + RBGNIR14 + Wavepacket14 (+ Byte14) 

They shall be in that order, and Byte and Byte14 are optional. 

Item Version: Version for the item: 

— 0 for no compression (if field “Compressor” in the header is set to “No Compression”).  
— For Point10, GPSTime11, RGB12, Byte: shall be 2. (Version 1 is outdated and not covered by 

this specification.)  
— For Wavepacket13: shall be 1.  
— For Point14, RGB14, RGBNIR14, Wavepacket14, Byte14: shall be 3. (Version 1 and 2 were 

never supported.)  
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8. Arithmetic Coding 

8.1. Introduction 

To compress the data, LAZ uses arithmetic coding as described and implemented in Said Amir, 
Introduction to Arithmetic Coding. 

Arithmetic coding is a lossless entropy encoding. The basic idea is, based on the probabilities of the 
occurrence of symbols in the alphabet, to store the data as one rational number. This number is 
chosen to represent which probability interval all symbols lie in. Given unlimited precision, an 
unlimited amount of data could be encoded in one rational number. 

As an example, we encode the sequence ABACA. Their probabilities are pA =
3

5
 , pB =

1

5
 and pC =

1

5
 , 

so we set the probability intervals in this order from 0 to 
3

5
 for A, 

3

5
 to 

4

5
 for B and 

4

5
 to 1 for C. 

To encode the first A, we can pick any number in the interval from 0 to 
3

5
 . E.g., if the encoded value 

(the number we pick) is 0.2, we know the first symbol (letter) is A, as 0.2 lies in the interval from 0 to 
0.6. 

To encode the next letter B, we divide the chosen interval from 0 to 
3

5
= 0.6 , which has a length of 

0.6 , according to the probabilities. E.g., the intervals are now 0 to 0.6 ⋅ (
3

5
) = 0.36 for A, 0.6 ⋅ (

3

5
) =

0.36 to 0.6 ⋅ (
4

5
) = 0.48 for B and 0.6 ⋅ (

4

5
) = 0.48 to 0.6 for C. This is a rescaling of the intervals. The 

chosen number now has to lie within the interval 0.36 to 0.48 to encode B. 

To encode the next letter A, we again divide the chosen interval from 0.36 to 0.48 , which has the 

length 0.12 , according to the probabilities. E.g., the first 
3

5
 of that interval represents A ( 0.36 to 

0.432 ), the next 
1

5
 of that interval represents B ( 0.432 to 0.456 ) and the last 

1

5
 of the interval stands 

for C ( 0.456 to 0.48 ). So for A, the number has now to lie within the interval 0.36 to 0.432 . 

This procedure is repeated for the next two letters: to encode C, the number has to lie in the last 
1

5
 of 

the interval 0.36 to 0.432 , i.e. in the interval 0.4176 to 0.432 , and to encode the letter A, the number 

has to be picked from within the first 
3

5
 of that interval, i.e. from 0.4176 to 0.42624 in Figure 1. 

The encoded rational number can be any number from within the last interval, for example 0.42 . 

The decoding process works similarly. It requires the probabilities, the length of the original string (5 

letters in this example), and the rational number, i.e. 0.42 for this example. The decoding process 
will go through the same intervals, and the rational number determines which interval and thus letter 
to pick. 

For example, 0.42 lies in the interval 0 to 0.6 , so the first letter is A. 0.42 lies in the interval 0.36 to 
0.48 , so the 2nd letter is B. The 3rd iteration of intervals were 0.36 to 0.432 for A, 0.432 to 0.456 for 

B and 0.456 to 0.48 for C, so 0.42 means A. For the 4th letter, the interval 0.4176 to 0.432 stands for 
C, and for the last letter, 0.42 lies within 0.4176 to 0.42624 , so A. 

The algorithm has to know to stop here (for example by knowing the number of letters), otherwise, 
the decoder would go on. 
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Figure 1 — Example: Arithmetic Coding for text "ABACA" 

While not directly obvious that this method compresses data, it is a nearly optimal entropy encoder if 
the probabilities are correct. 

8.2. Implementation 

Practically, the implementation has to consider rounding imprecisions, for example potential 
differences of floating point operations on 32 bit and 64 bit hardware or similar. 

While the LAZ algorithms are defined independently from an implementation, they are designed with 
4 byte unsigned integer values in mind, and without the use of any floating point operations. 

For example, modulo operations with 232 are used because of the range limit of a 4 byte unsigned 

integer value. Similarly, floor in divisions by 2x , for example, ⌊
some value

2x ⌋ , can (for an integer 

variable) oftentimes be implemented with a right shift by x bits. 

The algorithms use integers instead of floating point variables, and for that, the range of an integer 
variable is mapped to the rational values between 0 and 1. For e.g. a 4 byte unsigned long variable, 
0x0 is 0 and (the non-storable) 0x100000000 would be 1 (i.e. all usable numbers are between 0 and 
0.999999.., matching the required range for both the encoded rational number and the probabilities). 
All operations are then done using (exact) integer operations. This indirectly implies a precision of 

1

232 . 
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The compressed data stream represents a very long rational number between 0 and 1 (exclusive), 
but only a small subset of 4 bytes is used at a time. 

Additionally, to improve the compression, LAZ implements the following methods: 

— the probabilities are initialized as a uniform distribution (all symbols have the same probability). 
During de- and encoding, the occurrence of symbols are counted, and the distribution is 
regularly updated after every n symbols (depending on the situation). To avoid zero probabilities 
(and thus zero-length intervals), each count is initialized with 1. This allows the compression to 
adjust to the actual symbol distribution in the data. Also, there is no need to include the 
probabilities, which are required for decoding, in the compressed data (which would require 
space), as both the decoder and encoder can calculate those values.  

— each field may use several instances of distribution tables, depending on the situation. For 
example, there might be a correlation between the classification byte and the classification bits, 
so LAZ uses 256 different distribution table instances for the classification bits, selected by the 
classification byte. This can improve compression if the entropy is actually different. Similarly, 
the “classification”-field in the LAS point data is assumed to be dependent on the “return bits”-
field.  

— for most fields, only the difference to an offset value is stored, instead of the actual value. For 
example, the difference to the previous value, or the difference to the median of several 
previous values. For example, if the x coordinate changes only slowly to the next point, the 
probability for low values increases, which improves compression.  

Which probability table to use is specified in the field-specific descriptions. 
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9. LAZ Compression 

9.1. The compressed data stream 

An encoded data stream represents one long rational number (with arbitrary precision) between 0 

and 1, in the example in Figure 1 e.g. the value 0.42 . 

The symbol distribution tables (which describe the intervals) of the encoders (specified in the 
following clauses) are initialized with equal distribution, and adjusted from time to time to the actual 
distribution, i.e. the decoded and encoded symbols. They are kept in sync during encoding and 
decoding. 

To achieve arbitrary precision, the values are rescaled after each symbol, i.e. the intervals are 
always considered to go from 0 to 1. The actual length of the interval is kept, and if it gets too low, is 
rescaled too. 

Only 4 bytes of the data stream are used at a time. 

9.2. Data stream variables 

For a specific encoded data stream, the following variables (to describe the current intervals) are 
defined and considered persistent for that one data stream. The compression algorithms operate on 
those variables: 

Table 15 — Data stream variables 

Variable Range Description 

base 
0 … 

232 − 1  

Used during encoding, represents the most significant, processed bits of the 
rational number. Is the sum of the lower interval boundaries. When the 
precision changes, data is written to the data stream. 

value 
0 … 

232 − 1  

Used during decoding, represents the most significant, unprocessed bits of the 
rational number. The lower interval boundaries get subtracted from this value, 
i.e. it will be the difference from the lower bound of the current interval (and 
indirectly from base), representing the remaining, not yet decoded data. When 
the precision changes, more data is read from the data stream. During 
decoding, value will always lie between 0 and length. 

length 
0 … 

232 − 1  

The length of the current interval (in integer arithmetic), i.e. the difference 
between lower and higher bound. When the length gets to small (note that the 
interval length gets smaller in each step), it means the precision changes, and 
the length gets rescaled. Used for both encoding and decoding. 

NOTE:  The variables need to only store integer values (i.e. no decimal places). 

9.3. Initialization of the stream 

9.3.1. Decoding 

The decoder is initialized by: 

— reading the first 4 bytes from the data stream into the variable value, where the first byte in the 
data stream being the highest byte in the variable, the next one the second highest byte and so 
on:  
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value := read_one_byte_from_data_stream() ⋅ 224 + read_one_byte_from_data_stream() ⋅ 216 + 

read_one_byte_from_data_stream() ⋅ 28 + read_one_byte_from_data_stream() 

— length shall be initialized with 232 − 1 (i.e. 0xFFFFFFFF, a length of 1)  

9.3.2. Encoding 

— base shall be initialized with 0  

— length shall be initialized with 232 − 1 (i.e. 0xFFFFFFFF, a length of 1)  

9.4. Writing to and reading from a data stream 

9.4.1. Decoding 

Data is read from the encoded data stream whenever the interval size (length) gets lower than a 
threshold (note that value is always smaller than length), specifically, if length gets smaller than 4 
bytes (which means it is smaller than 0x01000000). The bytes in value get shifted to the left, 
replacing the highest byte (which is 0 by design), and a byte is appended from the data stream. 

Additionally, the length is scaled. This has the effect of increasing the precision (which means 
including more decimal places from the rational number). 

function renorm_dec_interval(): 

— left shift "value" by 1 byte, keep at most 4 bytes 

  value := (value ⋅ 28 ) mod 232  
— append one byte from the data stream (as the new lowest byte): 

  value := value + read_1_byte_from_data_stream()  
— adjust interval length (precision has been adjusted): 

  length := (length ⋅ 28 ) mod 232  
— do this again until length is larger than 3 bytes: 

  if length < 224  
  then run algorithm renorm_dec_interval()  

Figure 2 — Algorithm: renorm_dec_interval(), Pseudocode 

9.4.2. Encoding 

Similarly, data is written to the encoded data stream whenever the interval (length) gets lower than 
a threshold. The highest byte gets written to the data stream, the remaining bytes get shifted to the 
left. Additionally, length is adjusted. 

function renorm_enc_interval(): 

— write the highest (of 4) bytes from "base" to the data stream: 

  append_one_byte_to_data_stream( ⌊
base

224 ⌋ mod 28 )  

— left shift "base" by 1 byte (keep at most 4 bytes): 

  base := (base ⋅ 28 ) mod 232  
— adjust interval length (precision has been adjusted): 

  length := (length ⋅ 28 ) mod 232  
— do this again until length is larger than 3 bytes: 

  if length < 224  
  then run algorithm renorm_enc_interval()  

Figure 3 — Algorithm renorm_enc_interval(), Pseudocode 
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Additionally, base (the sum of the lower interval bounds) can get to a value larger than 232 − 1 (4 
bytes). In that case, 1 gets added to the previous byte (previously written to the data stream) in the 
following algorithm propagate_carry(). This can happen repeatedly, if the previous byte was already 
255. 

Note that, by design, the encoded data stream represents a rational number between 0 and 1. A 
situation to have to add 1 to the byte before the first byte of the data stream cannot occur. Also, any 
actual implementation will of course depend on the environment. 

function propagate_carry(): 

— get the end of the data stream, i.e. the previous byte written to the stream: 
  current_position := position_of_end_of_data_stream()  

— if the previous byte is 255, set it to 0 and repeat: 
  while byte_at_position(current_position) = 255 
  do 
      byte_at_position(current_position) := 0 
      current_position := current_position - 1  

— finally, add 1 to the byte before that: 
      byte_at_position(current_position) := byte_at_position(current_position) + 1  

Figure 4 — Algorithm propagate_carry(), Pseudocode 

9.5. Finalization of the stream 

9.5.1. Decoding 

The decoder does not need a final step. It should be noted though that the data stream does not 
have an end marker. To know when the data stream is finished, it is required to know how much 
data has to be read (e.g. the number of points in a chunk), and to just stop then. 

9.5.2. Encoding 

This function has to be called to finish a data stream, i.e. after all data has been written. 

When the encoding is done, base still contains a value that has to be written to the encoded data 
stream. To be in sync with the decoder (i.e. to always be able to fill value to 4 bytes), some zero-
bytes are added. 

function finalize_encoding_stream(): 

— adjust the base and length so data is written in renorm_enc_interval() 

  if length > 225  
  then 

       btmp := base + 224 // can be more than 4 bytes 

      base := btmp mod 232 // base uses only 4 bytes 

      length := 223 // writes 1 byte in renorm_enc_interval 
      write2bytes := false 
  else 

       btmp := base + 223 // can be more than 4 bytes 

      base := btmp mod 232 // base uses only 4 bytes 

      length := 215 // writes 2 bytes in renorm_enc_interval 
      write2bytes := true 
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  if btmp ≥ 232 // was more than 4 bytes 

  then run algorithm propagate_carry() // adds 1 to previous data  
— write 1 or 2 bytes from "base" (length has been set accordingly) 

   run algorithm renorm_enc_interval()  
— append 2, and optionally a 3rd, zero-bytes (to be in sync with decoder) 

   append_one_byte_to_data_stream(0) 
   append_one_byte_to_data_stream(0) 
   if write2bytes = false 
   then append_one_byte_to_data_stream(0)  

Figure 5 — Algorithm finalize_encoding_stream(), Pseudocode 

9.6. Processing a data stream 

9.6.1. Overview 

A data stream is fed to encoders, which are specified in Clause 10. These operate on the value, 
base and length-variables (and use the functions defined above). A data stream can be shared 
among several encoders. 

9.6.2. Decode 

The decoding process for a data stream will look as follows: 

— Initialize the data stream (e.g. initialize the values, and read the first 4 bytes)  
— initialize all decoders (e.g. reset the distribution tables and previous items for all fields that read 

from this data stream)  
— repeat until all expected data is processed:  

— use the next decoder in line and process and modify value and length of the data stream, 
read more data from the stream if needed. Which decoder to use is defined in the field 
description later in this specification. Update the distribution table, as specified in the 
encoder description.  

Specifically for a data stream with compressed point data, the last 2 bullet points mean: 

— repeat until all expected data is processed:  
— Read the next LAS point:  

— for that, read all LAZ items (i.e. subparts of a LAS point)  
— for that, read all fields of that item  

— for each field, use a specific decoder process and modify value and length of the 
data stream it belongs to. Update the distribution table, as specified in the 
encoder description.  

— the stored value may be the uncompressed value directly, or is used to calculate 
it, e.g. it might be the difference to a predicted value, for example the value of that 
field of the previous point, or an average over some points.  

— Stop when all points are read (which is known from the chunk size). There is no special “End 
of stream”-marker.  

9.6.3. Encode 

Symmetrically, the encoding process for a data stream will look as follows: 

— Initialize the data stream  
— initialize all encoders (e.g. reset the distribution tables and previous items)  
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— repeat until all expected data is processed:  
— use the next encoder in line and process and modify base and length of the data stream, 

write data to the stream if needed. Which encoder to use is defined in the field description 
later in this specification. Update the distribution table, as specified in the encoder 
description.  

— Finalize the stream  

9.7. Data streams in LAZ 

A LAZ file can have several encoded data streams. 

Each data stream has its own set of variables value, base and length, and has to be initialized 
separately. Each data stream can be read independently from all others. 

Data streams used are: 

— the chunk table  
— the compressed item data in the chunks  

— For LAS formats 0 through 5, each chunk contains one compressed data stream  
— For LAS formats 6 through 10, each chunk contains several layers (covering a subset of 

fields), each of which is a separate data stream  
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10. Encoders 

10.1. Overview 

LAZ defines 4 types of encoders, which will operate on the value, base and length, and encode or 
decode one value: 

— Symbol encoder: This is used to de- and encode data based on the symbol distributions. A 
symbol encoder has its own (or several) symbol distribution tables and parameters (i.e. number 
of symbols).  

— Bit Symbol encoder (single bit): Special version of the symbol encoder with just 2 symbols (i.e. 1 
bit), but slightly different internal behaviour.  

— Raw encoder: stores the data as is, without distribution tables and without a compression effect. 
This could also be regarded as a symbol coder where all probabilities are the same  

— Integer compressor: a compressor which itself uses all other three encoders to store an integer 
value.  

A data stream can (and usually will) be shared by several coders. Each step will change the value, 
base, and length for the next coder in line. Those coders are then used to, for example, store the 
actual LAS point data items. Each field can be stored using a different encoder, as described in the 
following chapters. 

10.2. Symbol encoder (generic) 

10.2.1. Overview 

The symbol encoder, or algorithmic encoder, translates the rational number (the compressed data 
stream) into a symbol (or vice versa), i.e. picks the letter from an alphabet according to the 
distribution. The distribution is adjusted based on the actual data read by this decoder. 

The symbol decoder is defined with the following parameters: 

— symbols: number of symbols, shall be an integer value between 1 and 1023  
— a reference to the data stream object it uses (e.g. the values base, value and length, and the 

functions renorm_dec_interval(), renorm_enc_interval() and propagate_carry()), optionally 
shared by several decoders  

and the following internal, encoder-instance specific variables: 

Table 16 — Symbol Encoder internal variables 

Variable Range Description 

symbol_count[symbols] 
0 … 

216 − 1  
array that counts the occurrence of each symbols 

distribution[symbols] 
0 … 

215 − 1  

array for the lower interval bounds of each symbol. In the 
example in Figure 1, it would store the information that the 
interval for A starts at probability 0 , B starts at 0.6 and C start at 

0.8 (while “C ends at 1” is implied). The values are stored as 
integer values, where 0 represents 0 and 32768 represents 1 . 
Note that this has a specific rounding effect on the precision of 
the interval bounds. Also note that the value 32768 (an upper 
bound) never actually has to be stored (as these are the lower 
bounds, and each interval has a size > 0). 

update_cycle 
0 … 

215 − 1  
number of symbols at which the next probability update should 
happen 
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Variable Range Description 

symbols_until_update 
0 … 

215 − 1  
number of symbols to the next update (counts down) 

NOTE:  All variables only need to store integer values (i.e. no decimal places). The arrays 
are assumed to be 0-indexed in the algorithms. 

and the following algorithms: 

— decodeSymbol(): gets the next decompressed symbol  
— encodeSymbol(): stores a symbol into the compressed data stream  
— update_distribution(): updates the probability table after update_cycle symbols were 

read/written  

10.2.2. Initialization 

At the start of the de- and encoding process, the variables are initialized. Note: symbols is the 
number of symbols of the encoder. 

— for all "symbol" in 0 … symbols - 1: 
      symbol_count[symbol] := 1 
  Note: not set to 0, to prevent intervals with length 0, which cannot be distinguished from each 
other with value  

— run update_distribution() once, which initializes the distribution tables from the symbol counts. 

— update_cycle := ⌊
symbols+6

2
⌋  

  Note: set after the call to update_distribution()  
— symbols_until_update := update_cycle 

  Note: set after the call to update_distribution()  

Figure 6 — Algorithm Initialization of the generic symbol encoder, Pseudocode 

10.2.3. Algorithm: update_distribution() 

Updates the interval bounds based on the occurrence of the symbols. The values are stored as 
integer values, as described above, which has a specific rounding effect. If a maximum total value is 
reached, the counts are halved. The probabilities are then scaled to add up to 100%, and the 
intervals are calculated. Note that this has a specific rounding effect. 

Used for both the encoding and decoding functions. 

Algorithm update_distribution(): 

— halve counts when a threshold is reached: 

  if (∑ (symbol_count[i])symbols−1
0 ) > 215  

  then 
      for all n in 0 … symbols - 1: 

          symbol_count[n] := ⌊
symbol_count[n]+1

2
⌋  

— recalculate the probabilities/interval boundaries: 
  sum := 0 

  total_count := ∑ (symbol_count[i])symbols−1
0   

  scale := ⌊
231

total_count
⌋  

  for all n in 0 … symbols - 1: 
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      distribution[n] := ⌊
scale⋅sum

216 ⌋  

      sum := sum + symbol_count[n]  
— set new update intervals: 

  update_cycle := ⌊
5⋅update_cycle

4
⌋  

  update_cycle := min(8 ⋅ (symbols + 6), update_cycle)  
  symbols_until_update := update_cycle  

Figure 7 — Algorithm update_distribution(), Pseudocode 

10.2.4. Decoding 

10.2.4.1. Algorithm: decodeSymbol() 

Decodes the next symbol: checks in which interval (i.e. distribution[ ]) the current value lies in, and 
returns it — this is the basic step described in Arithmetic Coding. Note that distribution[s] is the lower 
bound of the interval, distribution[s+1]-1 the upper bound. Then rescales the interval (the new 
interval is lower and upper bound of the chosen interval). The previous lower bound is subtracted 
from value (so value is only the difference from that lower bound, as an offset), length becomes 
the length of that interval. If length gets too low (i.e. the precision is too small), additional data is 
read (by appending more digits to value), and the interval adjusted. 

Algorithm decodeSymbol(), returns an integer value "symbol": 

— calculate length scaling (rounded down): 

   ltmp = ⌊
length

215 ⌋  

— select the interval in which "value" lies (scaled by the interval length), which determines the 
decoded "symbol": 
  for all s in 0 … symbols - 1: 

     if distribution[s] ⋅ ltmp ≤ value  

     then 
       symbol := s  

— remove the offset from "value" (the new value is within the new interval): 

  value := value - ( distribution[symbol] ⋅ ltmp )  

— the interval size is the bounds of that chosen interval. Special handling for last symbol (upper 
bound for this symbol is "length"): 
  if symbol < symbols - 1 
  then 
      length := (distribution[symbol+1] ⋅ ltmp ) - (distribution[symbol] ⋅ ltmp ) 

  else 
      length := length - (distribution[symbol] ⋅ ltmp )  

— if interval size gets too low (< 4 byte), add more data by calling renorm_dec_interval(): 

  if length < 224  
  then run algorithm renorm_dec_interval()  

— update the symbol counts: 
  symbol_count[symbol] := symbol_count[symbol] + 1  

— check if distribution table update is needed: 
  symbols_until_update := symbols_until_update - 1 
  if symbols_until_update = 0 
  then run algorithm update_distribution()  

— return the decoded symbol (an integer value) as the function result: 
  return symbol  

Figure 8 — Algorithm decodeSymbol(), Pseudocode 
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10.2.5. Encoding 

10.2.5.1. Algorithm: encodeSymbol() 

Encoding is exactly symmetrical to decoding. It operates on base and length instead of value and 
length. base adds up the lower bound of the interval, i.e. it is possible to calculate value by 
subtracting the lower bounds (the distribution[symbol]) from base, and vice versa. 

The scaling is done exactly as in the decoding process. As soon as the interval gets too small, data 
is written and the interval is adjusted. 

function encodeSymbol(symbol): 

— function is called with an integer parameter "symbol", values shall be 0 … symbols - 1  
— calculate length scaling (rounded down): 

   ltmp: = ⌊
length

215 ⌋  

— get the lower bound of the interval that symbol belongs in: 
   dlower: = distribution[symbol] ⋅ ltmp  

— Check if sum is larger than 4 bytes, then add 1 to previously written data stream: 

  if base + dlower ≥ 232  
  then run algorithm propagate_carry()  

— adjust the global variable "base", only use lower 4 bytes (i.e. & 0xFFFFFFFF): 

   base: = (base + dlower) mod 232  
— new length is upper bound - lower bound. For last symbol, upper bound is "1": 

  if symbol = symbols - 1 
  then 
      length := length - dlower  
  else 
      length := distribution[symbol+1] ⋅ ltmp − dlower  

— if interval size (precision) gets too small (less than 4 bytes), write data to data stream: 

  if length < 224  
  then run algorithm renorm_enc_interval()  

— update the symbol counts: 
  symbol_count[symbol] := symbol_count[symbol] + 1  

— check if distribution table update is needed: 
  symbols_until_update := symbols_until_update - 1 
  if symbols_until_update = 0 
  then run algorithm update_distribution()  

Figure 9 — Algorithm encodeSymbol(symbol), Pseudocode 

10.3. Bit Symbol encoder (for a single bit) 

10.3.1. Overview 

This is a simpler version of the generic symbol encoder for a single bit (i.e., a 2 symbol encoder). 
LAZ uses it only in the Integer Compressor. 

NOTE:  Compared to a generic symbol encoder with 2 symbols, this special 1 bit encoder 
uses slightly different thresholds and initial values (e.g. the right shift is by 13 bits, and the maximum 
count for halving the probabilities is lower). The generic symbol encoder with 2 symbols is also used 
by LAZ (also for the Integer Compressor), so there are 2 different ways to encode 2 symbols. 
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The bit symbol encoder operates on a data stream, i.e. its values base, value and length and the 
functions renorm_dec_interval(), renorm_enc_interval() and propagate_carry(). 

The following internal, encoder-instance specific variables are defined: 

Table 17 — Bit Symbol Encoder internal variables 

Variable Range Description 

bit_0_count 
0…

 216 − 1  
the number of occurrence of the value 0 

bit_count 
0…

 216 − 1  
total number of bits 

bit_0_prob 
0…

 213 − 1  

upper interval bound for bit 0, stored as an integer, where 0 represent 
0 and 8192 represents 1 (a value which itself is never stored in this 
variable). Note that this has a specific rounding effect on the precision 
of the interval bound. 

update_cycle 
0…

 216 − 1  
number of symbols at which the next probability update should happen 

bits_until_update 
0…

 216 − 1  
number of bits to the next update (counts down) 

NOTE:  All variables only need to store integer values (i.e. no decimal places). 

and the following algorithms: 

— decodeBit(): gets the next decompressed symbol (i.e. the next bit)  
— encodeBit(): stores a symbol (bit) into the compressed data stream  
— update_bit_distribution(): updates the probabilities after update_cycle bits were read/written  

10.3.2. Initialization 

At the start of the de- and encoding process, the variables are initialized with: 

— bit_0_count := 1  
— bit_count := 2 (i.e. bit 0 and 1 start with equal distribution)  

— bit_0_prob := 4096 (i.e. a probability of 
4,096

8,192
= 0.5 )  

— update_cycle := 4  
— bits_until_update := 4  

Figure 10 — Algorithm Initialization of the bit symbol encoder, Pseudocode 

10.3.3. Algorithm: update_bit_distribution() 

Similar to update_distribution() in the generic symbol encoder, update_bit_distribution() updates the 
interval bounds. If a maximum total value is reached, the counts are halved. 

Used for both the encoding and decoding functions. 

function update_bit_distribution(): 

— halve counts when the threshold is reached: 
  bit_count := bit_count + update_cycle 
  if bit_count > 8192 
  then 
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      bit_count := ⌊
bit_count+1

2
⌋  

      bit_0_count := ⌊
bit_0_count+1

2
⌋  

      // prevent interval sizes of 0 
      if bit_0_count = bit_count 
      then bit_count := bit_count + 1  

— recalculate the probabilities: 

  bit_0_prob := ⌊
⌊

231

bit_count
⌋⋅bit_0_count

218 ⌋  

— set new update frequencies: 

  update_cycle := ⌊
5⋅update_cycle

4
⌋  

  if update_cycle > 64 
  then update_cycle := 64 
  bits_until_update := update_cycle  

Figure 11 — Algorithm update_bit_distribution(), Pseudocode 

 

10.3.4. Decoding (Bit Symbol Encoder) 

Just as for decodeSymbol(), it decodes (and returns) a single bit based on the (regularly updated) 
bit distribution, and adjusts the interval. Note that it uses slightly different thresholds. 

function decodeBit(): 

— decode bit by checking which interval "value" is in: 

  if value ≥ bit_0_prob ⋅ ⌊
length

213 ⌋  

  then 
      bit := 1 
  else 
      bit := 0  

— set the new interval: 
  if bit = 0 
  then 

      length := bit_0_prob ⋅ ⌊
length

213 ⌋  

  else 

      value := value - bit_0_prob ⋅ ⌊
length

213 ⌋  

      length := length - bit_0_prob ⋅ ⌊
length

213 ⌋  

— if interval size gets too small (less than 4 bytes), read more data: 

  if length < 224  
  then run algorithm renorm_dec_interval()  

— count the bit occurrence: 
  if (bit = 0) 
  then 
      bit_0_count := bit_0_count + 1  

— check for symbol update interval: 
  bits_until_update := bits_until_update - 1 
  if bits_until_update = 0 
  then run algorithm update_bit_distribution()  
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— return the bit 
  return bit  

Figure 12 — Algorithm decodeBit(), Pseudocode 

10.3.5. Encoding (Bit Symbol Encoder) 

The encoding for a single bit works symmetrical to the decoding of a single bit. Just as the bit 
decoder, it uses slightly different thresholds compared to the generic symbol encoder. 

function encodeBit(bit): 

— one parameter "bit", values 0 or 1  
— adjust base (if bit is 0, base doesn’t change, as lower bound is 0): 

  if bit = 1 
  then 

      if base + bit_0_prob ⋅ ⌊
length

213 ⌋ ≥ 232  

      then run algorithm propagate_carry() 

      base := (base + bit_0_prob ⋅ ⌊
length

213 ⌋) mod 232  

— adjust the new interval length: 
  if bit = 0 
  then 

      length := bit_0_prob ⋅ ⌊
length

213 ⌋  

  else 

      length := length - bit_0_prob ⋅ ⌊
length

213 ⌋  

— if interval size (precision) gets too small (less than 4 bytes), write data to data stream: 

  if length < 224  
  then run algorithm renorm_enc_interval()  

— count the bit occurrence 
  if (bit = 0) 
  then 
      bit_0_count := bit_0_count + 1  

— check for symbol update interval: 
  bits_until_update := bits_until_update - 1 
  if bits_until_update = 0 
  then run algorithm update_bit_distribution()  

Figure 13 — Algorithm encodeBit(bit), Pseudocode 

10.4. Raw encoder 

10.4.1. Overview 

The Raw encoder stores bits “as is” in the data stream. 

It does not use any distributions and doesn’t require an initialization or internal state variables. It 
works directly with the value, base and length variables of a given data stream. 

For data with a size of more than 19 bits, the lowest 16 bits are stored first in the data stream, 
recursively. 

The LAZ specification uses the raw encoder for at most 64 bits. 
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10.4.2. Decoding (Raw encoder) 

The logic is similar to the Algorithmic Decoder and the decodeSymbol()-Algorithm, but doesn’t 
require a symbol lookup, but takes the data as is. 

Note that “overwriting” the value doesn’t change the previously encoded symbol (as the value can 
be chosen freely within the interval, which includes the scaled raw value). Since all bits of a raw 
value are required though, length will be adjusted by the complete size of the encoded value (e.g. 
by 16 bits for a 16 bit integer), and there is no compression effect. 

readBits(bit_count) reads bit_count raw bits from the data stream. For more than 19 bits, the lowest 
16 bits are read first (by calling readBits() recursively). Afterwards, the remaining bits are read 
recursively. 

The function renorm_dec_interval() has been defined in Clause 9. 

function readBits(bit_count): 

— parameter with the number of bits to read (1 .. 64)  
— if more than 19 bits, read 16 bits first, and then the rest, recursively: 

  if bit_count > 19 
  then 

      return (readBits(16) + readBits(bit_count - 16) ⋅ 216 ) 
      exit function  

— otherwise, read them as is: 

  raw := ⌊
value

⌊
length

2bit_count⌋
⌋  

— adjust interval: 

  length := ⌊
length

2bit_count⌋  

  value := value − length ⋅ raw  
— if interval size gets too small (less than 4 bytes), read more data: 

  if length < 224  
  then run algorithm renorm_dec_interval()  

— return it: 
  return raw  

Figure 14 — Algorithm readBits(bit_count), Pseudocode 

10.4.3. Encoding (Raw encoder) 

Encoding a value sym is completely symmetrical, operating on base and length. 

The function renorm_enc_interval() and propagate_carry() have been defined in Clause 9. 

Analogously to readBits(bit_count), writeBits(bit_count, sym) writes bit_count raw bits to the data 
stream. For more than 19 bits, the lowest 16 bits are written first, and then the remaining bits, 
recursively. 

function writeBits(bit_count, sym): 

— called with "bit_count" (the number of bits of "sym" to store), and sym, an unsigned integer value 
with at most the lowest "bit_count" bits used.  

— if more than 19 bits, write lowest 16 bits first, and then the rest, recursively: 
  if bit_count > 19 
  then 



LAZ Specification 1.4 

 

 

 

 

 31 

      run writeBits( 16, sym mod 216 ) 

      run writeBits( bit_count - 16, ⌊
sym

216 ⌋ ) 

      exit function  
— adjust interval: 

  length := ⌊
length

2bit_count⌋  

— sum larger than 4 bytes? Then add 1 to the previous byte in the data stream 

  if base + sym ⋅ length ≥ 232  
  then run algorithm propagate_carry()  

— encode the raw value as is: 

  base := (base + sym ⋅ length) mod 232  
— if interval size gets too small (less than 4 bytes), write some data: 

  if length < 224  
  then run algorithm renorm_enc_interval()  

Figure 15 — Algorithm writeBits(bit_count, sym), Pseudocode 

10.5. Integer Compressor 

10.5.1. Overview 

The Integer Compressor is a special encoder that uses a combination all 3 of the previously 
specified encoders, i.e. the generic symbol encoder, the single bit symbol encoder and the raw 
encoder, to store a signed integer number (4 bytes). 

LAZ uses this compressor to store the difference between a number and a predecessor (or some 
other predicted value). It is designed to store values close to 0 more efficiently. That means that, for 
example, monotonically increasing values (like x coordinates when flying over an area) oftentimes 
have a good compression rate, while for randomly distributed values, the integer compression can 
even require more bits than the original number. 

LAZ uses it to store the difference between 8-, 16-, and 32-bit integer values. As a convention, for 
32-bit values, LAZ uses signed integers for the number and the predecessor, while for 8-bit and 16-
bit values, LAZ uses unsigned integers as the number and the predecessor — while their difference, 
i.e. the actually stored value using the compressor, can be negative. To enforce these conventions 
and get the correct target ranges, the calculation of the difference (i.e. the value that is actually 
stored) is specified in IDiff8(), IDiff16() and IDiff32() for encoding, and in ISum8(), ISum16() and 
ISum32() for the reverse operation during decoding (i.e. calculating the final value after reading the 
stored difference from the data stream), see Clause 10.5.4. 

To actually encode the integer value (i.e. the difference), LAZ first encodes the number k that 

describe the tightest interval [−(2k − 1), +(2k)] that the value falls into, entropy codes up to 8 of its 

highest bits as one symbol, and stores any remaining lower bits using the raw encoder. 

An n-bit integer compressor consists of 

— a symbol encoder with n+1 symbols, which encodes k as defined above  
— a raw encoder, to store the lowest k-8 bits (if needed)  
— n+1 symbol encoders, one for each k, to store up to 8 highest bits. For k = 0, the special single 

bit Symbol encoder is used. For 1 ≤ k ≤ 8 , the (generic) symbol encoders with 2k symbols are 
used. For k > 8 , the (generic) symbol encoders with 256 symbols are used. E.g., for a 32-bit 
integer encoder, the 33 encoders have 2 (single bit), 2 (generic), 4, 8, 16, 32, 64, 128, 256, 256, 
… 256 symbols. Note that (only) for k = 32, the last symbol encoder is not actually used, as it is 
mapped to a constant value, see below.  
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In contrast to other encoder types, these n+1 encoders are shared among instances (of the same 
context) for one field. E.g., a field which uses 10 instances of a 32-bit Integer Encoder uses 10 
separate symbol encoders (each with their own distributions) to store k, and these 33 encoders 
(with 33 distributions), shared between the 10 instances, to store up to 8 highest bits, and finally, a 
raw encoder. 

Some fields use the k-value of the previous record in their calculation. The k-value is also shared 
among different instances (of the same context) of the same field. 

10.5.2. Encoding format 

Encoded are three things: 

— the number k of low-order bits and  
— the k-bit number that corrects the misprediction, usually broken into two chunks:  

— the highest 8 bits are compressed using an arithmetic coder  
— the lower bits, if any remain, are stored raw  

For a given k, only the values that do not lie in the intervals with smaller k need to be considered (as 

those would have used a smaller k by definition), and to utilize the full range, for 1 ≤ k ≤ 31 , the 

interval [−(2k − 1), +(2k)]  is mapped to the interval [0,  2k − 1] . 

For an n-bit Integer Compressor, the data is stored as: 

Table 18 — Format of the encoded and compressed n-bit integer value (Integer Compressor) 

Field Name Type Size Encoder No of instances Required 

k byte 1 byte n+1 Symbols 1 * 

Corrector byte 1 byte Bit Symbol; 2..256 Symbols n+1, shared  

lower bits unsigned int k-8 bits Raw   

The notation used in this table is described in Clause 10.6. 

k: The number k as defined above, encoded using a symbol encoder with n+1 symbols. 

Corrector: Only stored if k < 32 . Encoded using the symbol encoder number k. For k = 0, the bit 

symbol encoder is used (to store a single bit), for 1 ≤ k < 8 , the (generic) symbol encoder with 

2k symbols is used, and for k ≥ 8 , symbol encoders with 256 symbols each are used. 

The Corrector encodes up to the 8 most significant bits using the process described below 
(decoding and encoding). 

lower bits: Only stored if k > 8 (i.e. if the Corrector couldn’t store all bits). The k-8 bits are stored 
using a raw encoder for k-8 bits. 

10.5.3. Decoding (Integer compressor) 

The signed 32-bit integer value c is calculated as follows: 

— if k is 0, set c := Corrector (which is either 0 or 1), using the bit symbol encoder.  

— if k is 32, set c := −231 (i.e. the minimum for a signed 4 byte integer value)  
— if k ≥ 1 and k ≤ 31 (using the k-th symbol encoder for Corrector):  

— if k ≤ 8, set c := Corrector  

— if k > 8, set c := Corrector ⋅ 2k−8 + lower bits  

— move the value back to the interval [−(2k − 1), +(2k)] :  
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— if c ≥ 2k−1 , set c := c + 1  

— else set c := c − (2k − 1)  

 

10.5.4. Calculating the difference 

LAZ stores only the difference c between a predecessor (or predicted value) pred and the signed 
32-bit integer, actual value intvalue (even if pred is 0), i.e. intvalue = pred + c. This calculation is 
done using 32-bit signed variables, and specifically wraps around. 

Additionally, for 8- and 16-bit integer decoders, due to the convention declared above, this 
difference is then mapped to the unsigned integer range, as specified in ISum8() and ISum16(). 

For the 32 bit Integer compressor, this is specified for decoding (i.e. reading from the stream) as 
follows: 

function ISum32(pred, c): 

— parameters are: the predecessor "pred" and the decompressed stored value "c" (both in the 

range −231 … + 231 − 1 ) 
— calculate the sum "intvalue = pred + c" with wrap around:  

  if (pred + c) > 231 − 1  
  then 

      return pred + c - 232  
  else if (pred + c) < −231  
  then 

      return pred + c + 232  
  else 
      return pred + c 

Figure 16 — Algorithm ISum32(pred, c), Pseudocode 

Note that this is, written as C-Code, the same as (I32)intvalue = (I32)pred + (I32)c, and just wants to 
clarify how to use the stored value of the integer compressor. 

For 8- and 16-bit integer decoders, the calculation is also done using the 32-bit signed variables, 
with an additional mapping afterwards, specified in ISum8() and ISum16(). Note that this mapping 
has to be done even if the predecessor pred is 0 (so even if there is no actual difference to 
calculate), to ensure the result is not a negative value. 

function ISum16(pred, c): 

— parameters are: the predecessor "pred" ( 0 … 216 − 1 ) and the decompressed stored value "c" 

( −215 … + 215 − 1 )  
— get the sum using 32 bit integers: 

  intvalue := ISum32(pred, c)  
— apply an additional mapping into the correct range: 

  if intvalue < 0 
  then 

       intvalue := intvalue + 216  
  else if intvalue ≥ 216  
  then 

      intvalue := intvalue −216  
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— and return that value 
  return intvalue  

Figure 17 — Algorithm ISum16(pred, c), Pseudocode 

function ISum8(pred, c): 

— parameters are: the predecessor "pred" ( 0 … 28 − 1 ) and the decompressed stored value "c" 

( −27 … + 27 − 1 )  
— get the sum using 32 bit integers: 

  intvalue := ISum32(pred, c)  
— apply an additional mapping into the correct range: 

  if intvalue < 0 
  then 

       intvalue := intvalue + 28  
  else if intvalue ≥ 28  
  then 

      intvalue := intvalue −28  
— and return that value 

  return intvalue  

Figure 18 — Algorithm ISum8(pred, c), Pseudocode 

For encoding, first, the difference to the predecessor “pred”, and (for 8 and 16 bit encoders) the 
mapping from unsigned integers, is calculated, and only this resulting signed integer value c is 
stored in the data stream. The difference and mapping is specified analogously to decoding: 

function IDiff32(pred, intvalue): 

— parameters are: the predecessor "pred" and the to-be-stored integer value "intvalue" (both in the 

range −231 … + 231 − 1 )  
— calculate the difference "c = intvalue - pred" with wrap around:  

  if (intvalue - pred) > 231 − 1  
  then 

      return intvalue - pred - 232  
  else if (intvalue - pred) < −231  
  then 

      return intvalue - pred + 232  
  else 
      return intvalue - pred 

Figure 19 — Algorithm IDiff32(pred, intvalue), Pseudocode 

Just as for decoding, note that this is, written as C-Code, just (I32)c = (I32)intvalue — (I32)pred. 

For 8- and 16-bit integer encoders, the additional mapping is required as specified in IDiff8() and 
IDiff16(): 

function IDiff16(pred, intvalue): 

— parameters are: the predecessor "pred" and the to-be-stored integer value "intvalue" (both in the 

range 0 … 216 − 1 )  
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— get the sum using 32 bit integers: 
  c := IDiff32(pred, intvalue)  

— apply an additional mapping into the correct range: 

  if c < −215  
  then 

       c := c + 216  
  else if c > 215 − 1  
  then 

      c := c −216  
— and return that value 

  return c  

Figure 20 — Algorithm IDiff16(pred, intvalue), Pseudocode 

function IDiff8(pred, intvalue): 

— parameters are: the predecessor "pred" and the to-be-stored integer value "intvalue" (both in the 

range 0 … 28 − 1 )  
— get the sum using 32 bit integers: 

  c := IDiff32(pred, intvalue)  
— apply an additional mapping into the correct range: 

  if c < −27  
  then 

       c := c + 28  
  else if c > 27 − 1  
  then 

      c := c −28  
— and return that value 

  return c  

Figure 21 — Algorithm ISum8(pred, intvalue), Pseudocode 

10.5.5. Encoding (Integer compressor) 

Compressing works completely symmetrically to encode a value c, that has been calculated as the 
difference between an integer value and the predecessor using IDiff32, IDiff16 or IDiff8. 

NOTE:  Analogous to the decoder, for 8-bit and 16-bit integers, the mapping described in 
Clause 10.5.4, i.e. one of IDiff32, IDiff16 or IDiff8, has to be used first, even if the predicted value is 
“0”. 

With the value c: 

— find the value for k, so that the interval [−(2k − 1), +(2k)] is the tightest interval that contains c  

— encode k using the symbol encoder with n+1 symbols  
— if k is 0 (which means c is 0 or 1), encode that bit as the field Compressor using the bit symbol 

encoder. No lower bits field is stored  

— else if k is 32 (i.e. c is −231 ), it’s done, no Compressor or lower bits fields are stored  
— else  

— map the value from [−(2k − 1), +(2k)] to the interval [0, 2k − 1]:  

— if c < 0, set c := c + 2k − 1  
— else set c := c −1  
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— if k ≤ 8, encode c as the field Compressor := c using the k-th symbol encoder (i.e. the 

symbol encoder with 2k symbols). No lower bits field is stored.  

— if k > 8, encode ⌊
c

2k−8⌋ as the field Compressor using the k-th symbol encoder (which has 

256 symbols). The field lower bits is set to lower bits := c mod (2k−8) and stored using a 

raw encoder with k-8 bits.  
 

10.6. Encoder notation and encoding overview 

The following chapters describe how these encoders are used to compress and decompress the 
data. 

In general, a compressed LAZ item field is stored using a specific encoder, e.g. a symbol encoder 
with 256 bytes. 

There can be several instances of that symbol encoder that are used for the same field. Each 
instance has its own distribution table and symbol count and is initialized independently. Which 
instance is used to decode or encode the field is part of the field description. It can e.g. be chosen 
based of the value of the previous or current point or some other calculation.  

E.g., in an object oriented programming language, to encode a field with 256 instances of a symbol 
encoder, one could instantiate 256 symbol-encoder-objects, and pick the correct instance based on 
the situation. 

In case of an Integer Compressor, the (up to 33) symbol encoders for the k-value are shared among 
those instances, as described in Clause 10.5. 

Only the selected instance is used and it is fed the compressed data value, returning a 
decompressed value, and only adjusting the internal variables of that instance. 

This value will then be used to calculate the decompressed LAS field. In many cases, it will be 
added to the value of that field of the previous (decompressed) point, so the compressed field will 
only store the difference between two consecutive points. For some fields, a different logic can be 
used, for example the difference to the average value of several previous points, or the difference to 
a previous point with a specific characteristic. 

Which calculation and which previous point(s) are used is specified in the field descriptions. 

As an example, the following notation would describe two fields of an uncompressed LAS data 
format, 

Table 19 — Notation example for an uncompressed LAS format 

Field Name Format Size Required 

Classification unsigned char 1 byte * 

Scan Angle Rank char 1 byte * 

which would for example be stored based on the following notation: 

Table 20 — Notation example for a compressed LAZ item for the example LAS data 

Field Name Type Size Encoder No of instances Required 

Classification unsigned char 1 byte 256 Symbols 256  

dScan Angle Rank unsigned short 1 byte 256 Symbols 2  
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Those can have for example the following field specifications: 

Classification: Stored using a symbol encoder with 256 symbols and 256 instances. The instance 
is selected by the value of Classification of the previous item. The uncompressed value is stored 
as is, i.e. it is the value of the uncompressed LAS field Classification. 

dScan Angle Rank: Stored using a symbol encoder with 256 symbols and 2 instances. If Scan 
Angle Rank of the previous item was ≤ 128 , the first instance is used, if Scan Angle Rank of the 

previous item was > 128 , the second instance is used. The uncompressed value is stored as the 
difference to the previous point, i.e. the uncompressed value Scan Angle Rank := (Scan Angle 
Rank (previous point) + dScan Angle Rank) MODULO 256. 

This means: 

The fields are (de-)compressed with the specified coder of the given size, i.e. here in both cases a 
symbol encoder with 256 symbols to store a byte value. Other compressors are the Integer 
compressor (with a specific byte size) and the RAW encoder (also with a specific byte size). 

The Classification-field would have 256 instances of that symbol encoder, each with its own 
distribution tables. The field description specifies that the instance to use is chosen by the 
Classification value of the previous point, which means that if the previous point had, for example, 
the Classification value of 142, the 142nd instance of the compressor shall be used. 

To get to the uncompressed LAS data, the LAZ field may have to be processed further. E.g., in case 
of Scan Angle Rank, the uncompressed LAS field is calculated as the sum modulo 256 of the value 
from the previous point and the value of dScan Angle Rank, as only the difference is stored. 

The column Required indicates that this field might not actually be stored. It can depend on the 
content of another field, e.g., some bit fields are used to store the information if specific fields are 
unchanged, and if they are not changed, they shall not be stored (and thus also not read). This also 
applies to fields or values which are noted as skipped or unused, usually depending on conditions in 
the description of the fields, they are also neither stored while encoding nor shall they be read 
during decoding. 

Figure 22 shows a graphical overview of this situation. 
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Figure 22 — Example process for decoding a compressed data stream for 2 sample fields 

For LAZ items Point14, RGB14, RGBNIR14, Byte14 and Wavepacket14 (corresponding to LAS 
record format types 6 to 10), 4 “contexts” are used. A context includes their own copy of all the 
instances of all encoders for all fields, the previous items (i.e. previous items are context dependent) 
and all intermediate values (for example, the calculation of mean values). The context to use for the 
next point is based on some criterion. They share the data stream though, as specified in Clause 
12.2. 

10.7. Compressing and decompressing a field 

Compressing and decompressing a specific field means to run the encoding or decoding algorithms 
for that field, as declared in the previous chapters. 

The encoder to use is specified in the field specification as the “encoder”. 

Depending on the encoder, the following algorithms shall be used to compress or decompress a 
field: 
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Table 21 — Algorithms to use to (de-)compress a field, depending on encoder type 

Encoder Decoding Algorithm Encoding Algorithm 

Symbol decodeSymbol()  encodeSymbol()  

Bit Symbol decodeBit() encodeBit() 

Raw decodeBits() encodeBits() 

Integer Compressor, 32-bit Integer Decoder and ISum32() IDiff32() and Integer Encoder 

Integer Compressor, 16-bit Integer Decoder and ISum16() IDiff16() and Integer Encoder 

Integer Compressor, 8-bit Integer Decoder and ISum8() IDiff8() and Integer Encoder 
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11. LAZ Compressed Data Block and Chunk Table 

11.1. Overview 

The compressed data block is located at the position Offset to point data (as declared in the 
LAS/LAZ header) and replaces the uncompressed point data of the LAS format. It is the central 
element of the LAZ format. 

Depending on the field Compressor in the LAZ Special VLR, the block is structured differently: 

— for “Pointwise compression” (LAS record format types 0-5 only), only a single chunk is used and 
no chunk table is included  

— for “Pointwise and chunked compression” (LAS record format types 0-5 only), the points are 
divided into chucks, and a chunk table is included  

— for “Layered and chunked compression” (LAS record format types 6-10 only), the points are 
divided into chucks, a chunk table is included, and each chunk is divided again into layers 
(which contain a subset of fields, but for all points), and each chunk includes a layer table  

11.2. Pointwise compression 

For pointwise compression, the compressed data block for LAS record points format 0-5 uses a 
single chunk and no chunk table and is structured the following way: 

Table 22 — Overview LAZ Compressed Data Block for LAS record points 0-5, Pointwise 
compression 

Chunk 1 (only 1 chunk exists) 
1st record, uncompressed 

Item 1 (Point10) 

Item 2 (e.g. RGB12) 

… other items 

Compressed item data 

11.3. Pointwise and chunked compression 

The compressed data block for LAS record points format 0-5 with chunks (Pointwise and chunked 
compression) is structured the following way: 

Table 23 — Overview LAZ Compressed Data Block for LAS record points 0-5, Pointwise and 
chunked compression 

Chunk table start position 

Chunk 1 
1st record, uncompressed 

Item 1 (Point10) 

Item 2 (e.g. RGB12) 

… other items 

Compressed item data 

Chunk 2 
1st record, uncompressed 

Item 1 (Point10) 

Item 2 (e.g. RGB12) 

… other items 

Compressed item data 

Chunk n … 

Chunk table 

Version 

Number of chunks 

Compressed data with chunk sizes in bytes and record counts 
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11.4. Layered and chunked compression 

The compressed data block for points 6-10 uses layers and is structured the following way: 

Table 24 — Overview LAZ Compressed Data Block for LAS record points 6-10, layered 
compression 

Chunk table start position 

Chunk 1 

1st record, uncompressed 

Item 1 (Point14) 

Item 2 (e.g. RGB14) 

… other items 

Chunk size (record count) 

Layer table (layer sizes in bytes) 

Size of Layer 1 

Size of Layer 2 

… 

Layer 1: compressed item data (with subset of fields) 

Layer 2: compressed item data (with subset of fields) 

Layer 3: compressed item data (with subset of fields) 

… remaining layers 

Chunk 2 

1st record, uncompressed 

Item 1 (Point14) 

Item 2 (e.g. RGB14) 

… other items 

Chunk size (record count) 

Layer table (layer sizes in bytes) 

Size of Layer 1 

Size of Layer 2 

… 

Layer 1: compressed item data (with subset of fields) 

Layer 2: compressed item data (with subset of fields) 

Layer 3: compressed item data (with subset of fields) 

… remaining layers 

Chunk n … 

Chunk table 

Version 

Number of chunks 

Compressed data with chunk sizes in bytes and record counts 

11.5. LAZ Compressed Data Block Specification 

The point data is stored in chunks. After each chunk, the compressors, distribution tables and all 
chunk specific settings (e.g. the “last item”) are reset and reinitialized. 

The chunk table allows to start reading at a later chunk and to skip records. The chunks are stored 
sequentially and shall not have gaps between them. 

In case of adaptive chunk sizes (only supported for LAS record type formats 6 through 10), the sizes 
can vary, and the actual chunk size is stored in the chunk table; otherwise, each chunk contains the 
same number of points (Chunk size as specified in the LAZ VLR, Clause 7) and the chunk table 
does not store this (constant) value. 

For Pointwise and chunked compression and Layered and chunked compression, a chunk 
table is included, and the compressed data block is defined as follows: 
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Table 25 — LAZ compressed data block format, chunked compression 

Field Name Format Size Required 

Chunk table start position long long 8 bytes * 

Chunks Array of Chunk  * 

Chunk table Chunk table format  * 

Chunk table start position: Only stored if Pointwise and chunked compression or Layered and 
chunked compression is used. Absolute position in the file where the chunk table is stored. If -1, 
the actual value of the Chunk table start position is stored in the last 8 bytes of the file, the optional 
field Chunk table start position (EOF) (This can be used, for example, if the file isn’t seekable, so 
the field Chunk table start position cannot be written after the point data has been written). 

Chunk table start position (EOF): Value for Chunk table start position, stored at the end of the 
file (for example, if the file is not seekable while writing). Only stored if Chunk table start position 
is -1. 

Chunks: An array of chunks which store the compressed data points. There are Number of 
chunks chunks (as declared in the chunk table) or 1 chunk for Pointwise compression. Can 
contain 0 chunks (i.e., it can be empty), if no points are contained in the file. 

The chunks are stored in consecutive order, without gaps, and the contained compressed data 
stream can be read independently from each other, as the compressors reset for each new chunk. 
The position of each chunk is specified in the Chunk Table, Clause 11.6. Its format is specified in 
Clause 11.7. 

Pointwise compression only has a single chunk and no chunk table, and the compressed data 
block is defined as follows: 

Table 26 — LAZ compressed data block format, pointwise compression 

Field Name Format Size Required 

Chunks Chunk  * 

11.6. Chunk table 

Chunk table: List of information about the chunks: 

Table 27 — Chunk table format 

Field Name Format Size Required 

Version unsigned long 4 bytes * 

Number of chunks unsigned long 4 bytes * 

Compressed Chunk Table Data    

The chunk table follows directly after the chunks, and the absolute position in the file is given by the 
Chunk table start position or, if this is -1, by Chunk table start position (EOF). 

Version: Version of chunk table. Shall be “0”. 

Number of chunks: Number of chunks. Is allowed to be 0 (for a file without any points), in which 
case no compressed chunk table data is stored. 
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Compressed Chunk Table Data: Compressed list of unsigned long integer values. The data is 
compressed using one 32-bit Integer Compressor, with 2 instances. Only stored if Number of 
chunks is not 0. 

Table 28 — Chunk Table Data Entry compression format 

Field Name Type Size Encoder 
No of 
instances 

Required 

Chunk Table Data unsigned long[] 4 bytes Integer Compressor, 32 bits 2 * 

Chunk Table Data: The data is an array of unsigned integer values, either 1 or 2 values per 
number of chunks. 

If adaptive chunk sizes are not used, i.e. Chunk size (as specified in the LAZ VLR in Clause 7) is 

not equal to ( 232 − 1 ), the integer values store the difference of the chunk size in bytes to the chunk 
size in bytes of the previous chunk (or 0 for the first chunk). The same compressor is used for all 
values (i.e. one instance is unused): 

Table 29 — Chunk Table Data Entry, without adaptive chunk sizes 

Field Name Format Size Required 

dChunk byte size long 4 bytes * 

If adaptive chunk sizes are used (i.e. Chunk size = 232 − 1 ), the integer values store the number of 
points in the first chunk, then the size of the first chunk in bytes, then the difference of number of 
points in the 2nd chunk to the number of points in the first chunk, then the difference of chunk size 
in bytes of the 2nd chunk to the chunk size in bytes of the first chunk, and so on. For the number of 
points and for the chunk in bytes, a different compressor is used: 

Table 30 — Chunk Table Data Entry, with adaptive chunk sizes 

Field Name Format Size Required 

dChunk count long 4 bytes * 

dChunk byte size long 4 bytes * 

dChunk count: Only stored if adaptive chunk sizes are used. Difference of the number of points in 
this chunk to the number of points in the previous chunk, i.e. Chunk count := ISum32(Chunk count 
(previous chunk), dChunk count). Compressor 1 is used for this field. For non-adaptive chunks, 
each chunk (apart from the last one) has the same number of points, declared by the global Chunk 
size, and dChunk count is not stored. The sum Chunk count has to be larger than 0, i.e. each 
chunk has to contain at least 1 point. 

dChunk byte count: Difference of the size of the chunk in bytes to the size of the chunk in bytes of 
the previous chunk (or 0 for the first chunk), i.e. Chunk byte count := ISum32(Chunk byte count 
(previous chunk), dChunk byte count). Compressor 2 is used for this field. 

NOTE:  The absolute chunk positions in the file are thus the position of the field Chunk table 
start position (given by the Offset to point data from the LAZ header) + 8 for the first chunk, and 
for the next chunk incremented by Chunk byte count of the previous chunk. 

11.7. Chunk format 

The chunks are stored consecutively, in order, and without gaps. For each chunk, the compression 
resets: all compressors and distribution tables are reinitialized, and the previous items are cleared. 
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Each chunk can be decoded independently, the position of each chunk is given by the chunk table. 
For Pointwise Compression, all data is stored in a single chunk, and no chunk table is stored. 

Each chunk starts with one uncompressed item record for each occurring item. The uncompressed 
item form is specified in Clause 12. 

For LAS points 0 to 5, the remaining data is one compressed data stream shared by all items and 
encoders that read from it. 

For LAS points 6 to 10, layered compression is used (mandatory). Each item is stored separately in 
“layers”. Additionally, some items are subdivided further into more layers which contain a subset of 
fields of the item. For this, each chunk contains an additional layer table with the byte sizes of each 
layer. 

Each layer is their own data stream, and can be decoded independently from the other layers 
(which e.g. allows to skip decoding some of the fields, if they are not of interest to the reading 
application). 

A layer can be empty, i.e. can have a size of 0. This denotes: all fields of that layer are equal to that 
field of the first item (which has been stored uncompressed at the beginning of the chunk). 

Table 31 — Chunk format definition 

Field Name Format Size Required 

Point10 bytes 20  

GPSTime11 bytes 8  

RGB12 bytes 6  

Wavepacket13 bytes 29  

Byte bytes as declared in the LAZ VLR  

Point14 bytes 30  

RGB14 bytes 6  

RGBNIR14 bytes 8  

Wavepacket14 bytes 29  

Byte14 bytes as declared in the LAZ VLR  

Layer table (6 to 10 only)    

Compressed Item Data   * 

Only the items specified in the LAZ VLR are stored, and the fields are stored in the order specified 
there: 

Point10: Uncompressed Point10-item, only stored if declared in the LAZ VLR. 

GPSTime11: Uncompressed GPSTime11-item, only stored if declared in the LAZ VLR. 

RGB12: Uncompressed RGB12-item, only stored if declared in the LAZ VLR. 

Wavepacket13: Uncompressed Wavepacket13-item, only stored if declared in the LAZ VLR. 

Byte: Uncompressed Byte-item, only stored if declared in the LAZ VLR. 

Point14: Uncompressed Point14-item, only stored if declared in the LAZ VLR. 

RGB14: Uncompressed RGB14-item, only stored if declared in the LAZ VLR. 

RGBNIR14: Uncompressed RGBNIR14-item, only stored if declared in the LAZ VLR. 
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Wavepacket14: Uncompressed Wavepacket14-item, only stored if declared in the LAZ VLR. 

Byte14: Uncompressed Byte14-item, only stored if declared in the LAZ VLR. 

Layer table (6 to 10 only): Only stored for LAS point data record formats 6 to 10. The layer table 
contains the sizes of each layer of the occurring items. Each layer contains a subset of the fields, 
and uses their own data stream (so it is possible to just read a specific layer, and skip others, saving 
decoding time). 

The first entry of the table is the chunk size (which is also redundantly stored in the chunk table). 

After that, the layer size in bytes is stored as unsigned long values (4 byte). The layers for the 
Point14-item are always stored (as they are part of all point data record formats), the remaining 
layers are only stored if the item is specified in the LAZ VLR. They are stored in the specified order. 

A layer can have a size of 0. This means that the value has the same value as the first 
(uncompressed) item, and the layer itself is not stored. 

The actual layer data starts directly after the layer table. The file positions of the layers can be 
calculated from the sizes in bytes. 

The table has the following format: 

Table 32 — Layer table 

Layer Number Field Name Format Size Required 

- Chunk size unsigned short 4 * 

1 
Point14: channel, returns, XY layer 
size 

unsigned short 4 * 

2 Point14: Z layer size unsigned short 4 * 

3 Point14: classification layer size unsigned short 4 * 

4 Point14: flags layer size unsigned short 4 * 

5 Point14: intensity layer size unsigned short 4 * 

6 Point14: scan angle layer size unsigned short 4 * 

7 Point14: user data layer size unsigned short 4 * 

8 Point14: point source layer size unsigned short 4 * 

9 Point14: gpstime layer size unsigned short 4 * 

10 RGB14: rgb layer size unsigned short 4  

11 RGBNIR14: rgb layer size unsigned short 4  

12 RGBNIR14: nir layer size unsigned short 4  

13 Wavepacket14: wavepacket layer size unsigned short 4  

14 Byte14: bytes layer size unsigned short [n] 4 * n  

NOTE:  The layer number is just used to refer to it later within this specification (the number 
itself is not stored, nor do all 14 layer table entries have to be stored). The layers, if they exist, 
have to be stored in this order. 

Chunk size: Number of points in this chunk. For adaptive chunks, shall be the same as Chunk size 
calculated from the in the Chunk Table, specified in Table 30. For non-adaptive chunks, shall be the 
same as Chunk size specified in the LAZ VLR in Clause 7. 

Point14: channel, returns, XY layer size: Layer size in bytes, contains the compressed fields 
Changed Values, Scanner Channel, Return Number, Number of returns, dX and dY of the 
Point14-item. 
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Point14: Z layer size: Layer size in bytes, contains the compressed field dZ of the Point14-item. 

Point14: classification layer size: Layer size in bytes, contains the compressed field 
Classification of the Point14-item. 

Point14: flags layer size: Layer size in bytes, contains the compressed field Flags (which encodes 
the LAS fields Classification Flags, Scan Direction Flag and Edge of Flight Line) of the Point14-
item. 

Point14: intensity layer size: Layer size in bytes, contains the compressed field dIntensity of the 
Point14-item. 

Point14: scan angle layer size: Layer size in bytes, contains the compressed field Scan Angle of 
the Point14-item. 

Point14: user data layer size: Layer size in bytes, contains the compressed field User Data of the 
Point14-item. 

Point14: point source layer size: Layer size in bytes, contains the compressed field dPoint 
Source ID of the Point14-item. 

Point14: gpstime layer size: Layer size in bytes, contains the compressed field gpstime of the 
Point14-item. 

RGB14: rgb layer size: Layer size in bytes, contains the compressed fields Changed values, 
dRed, dGreen and dBlue (low and high each) of the RGB14-item. 

RGBNIR14: rgb layer size: Layer size in bytes, contains the compressed fields Changed values, 
dRed, dGreen and dBlue (low and high each) of the RGBNIR14-item. 

RGBNIR14: nir layer size: Layer size in bytes, contains the compressed fields Changed values 
NIR and dNIR (low and high) of the RGBNIR14-item. 

Wavepacket 14: wavepacket layer size: Layer size in bytes, contains all the compressed fields of 
the Wavepacket14-item. 

Byte14: bytes layer size: Array of layer sizes in bytes. Each layer contains one of the n bytes of 
the Byte14-item. Note: as with all layers, the size can be 0, which means that the bytes of that layer 
are equal to that byte in the first item (that had been stored uncompressed). 
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12. Accessing LAZ Items 

12.1. Overview 

The items are read from and written to the data stream in order. 

After a chunk is completed, the instances and contexts are reset and reinitialized. 

The items for LAS Points 6 through 10 (items Point14, RGB14, RGBNIR14, BYTE14 and 
Wavepacket14) are stored using layers. 

12.2. Contexts 

Additionally, the items for LAS Points 6 through 10 use 4 contexts: 4 copies of all instances, and 
each context with their own previous items, including medians. 

Which context to use is decided by the POINT14-item. The remaining items (RGB14, RGBNIR14, 
BYTE14 and Wavepacket14) use a context based on the context of the POINT14-item. 

The context is selected by the value of scanner channel (values 0 to 3). The proceeding is as 
follows: 

— the first item in a chunk is stored uncompressed. Pick the scanner channel of that item as the 
initial context, and this item as the “previous item” for this context.  

— de-/encode the field Changed values of the next (compressed) Point14-item, using the current 
context  
— if bit 6 of that field has been set, the scanner channel has been changed, so de-/encode the 

field dScanner channel to calculate Scanner Channel using the current context, and make 
a context switch for the remaining fields of the Point14-item:  
— if the context has not been used yet (in this chunk), copy the “previous item” from the 

current context as the “previous item” for the new context, and use it as the initial item for 
that context.  

— set the context to the value of scanner channel. This context is used for all remaining 
fields and all other items  

— after the item is done, set the “previous item” of the current/new context to this item  
— for all other items (RGB14, RGBNIR14, BYTE14 and Wavepacket14), due to an implementation 

problem — which nevertheless is part of the standard — the context switch doesn’t work in an 
obvious manner:  
— if the new context (as given by the last read Point14-item) is different from the old context:  

— if the new context (as set by the Point14-item) has not been used for this item, copy the 
“previous item” from the current context as the “previous item” for the new context. After 
processing the item, it is stored as the “previous item” for this new context, and used as 
the initial item for that context.  

— if the new context has already been used by this item, the “previous item” is taken from 
the old context! All calculations that involve the previous item (for example, the difference 
to the previous item) are using this (non-obvious) “previous item”. Additionally, after 
processing the new item, it is used as the previous item of the old context!  

— The instances and other context-specific elements (for example, average values) are 
taken from the “correct”, new context.  

— if the new context is the same as the old context, the “previous item” of that context is used 
and changed.  

References to the “previous item of this context” are used as described above, and for RGB14, 
RGBNIR14, BYTE14 and Wavepacket14 optionally referring to the previous item of the old context. 
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13. LAZ Items, LAS formats 0 to 5 

13.1. Point10 (version 2) 

The Point10-item is the common part for all LAS Point Data Record Formats 0 through 5. The 
uncompressed fields are the following: 

Table 33 — Point10-item format, uncompressed 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

The first entry per chunk is this uncompressed item. 

The first uncompressed item is considered the previous item of the first compressed item. 

Details about the fields are described in Annex A. 

The compressed item is stored as follows: 

Table 34 — Point10-item format, compressed 

Field Name Type Size Encoder 
No of 
instances 

Required 

Changed values bits 6 bits 64 Symbols 1 * 

Bit-Byte 8 bits 1 byte 256 Symbols 256  

dIntensity short 
2 
bytes 

Integer Compressor, 16 
bits 

4  

Classification unsigned char 1 byte 256 Symbols 256  

dScan Angle 
Rank 

unsigned 
short 

1 byte 256 Symbols 2  

User Data unsigned char 1 byte 256 Symbols 256  

dPoint Source ID short 
2 
bytes 

Integer Compressor, 16 
bits 

1  

dX long 
4 
bytes 

Integer Compressor, 32 
bits 

2 * 

dY long 
4 
bytes 

Integer Compressor, 32 
bits 

22 * 

dZ long 
4 
bytes 

Integer Compressor, 32 
bits 

20 * 

Changed Values: Bit-mask of 6 bits that specifies whether any of the next 6 fields have changed in 
comparison to a previously processed point, specified in the field (it doesn’t have to be the direct 
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predecessor for all fields). If an attribute has not changed, the bit is not set, and the value of that 
field is not stored in the data stream, i.e. not en-/decoded, and has to be skipped during the 
decoding, i.e., no data is read for such a field, as no data has been stored for this field. Stored using 
the symbol coder with 64 symbols (6 bits). 

The bitmask is defined as follows: 

Table 35 — Bit mask field “Changed values” 

Bit Field 

5 Bit-Byte 

4 Intensity 

3 Classification 

2 Scan Angle Rank 

1 User Data 

0 Point Source ID 

Bit-Byte: Only stored if changed to the previous item (i.e. bit 5 of Changed values is set). The 3 + 3 
+ 1 + 1 bits of Bit-Byte are the uncompressed values: 

— return number (bits 0 to 2 of Bit-Byte)  
— number of returns of given pulse (bits 3 to 5 of Bit-Byte)  
— scan direction flag (bit 6 of Bit-Byte)  
— edge of flight line flag (bit 7 of Bit-Byte).  

The field Bit-Byte is encoded using a symbol coder with 256 symbols. There are 256 instance for 
that field, it is chosen by the Bit-Byte-value of the previous item. 

From r := return number and n := number of returns of the given pulse, for use in the next 
calculations two values are defined: m, which serializes the combinations for r and n (valid and 
invalid ones), and l, the return level (how many returns there have already been prior to this return), 
again for valid and invalid combinations, with the following mapping: 

m := number_return_map[n][r] 
l := number_return_level[n][r] 
 
return_map_m[8][8] := 
{ 
  { 15, 14, 13, 12, 11, 10,  9,  8 }, 
  { 14,  0,  1,  3,  6, 10, 10,  9 }, 
  { 13,  1,  2,  4,  7, 11, 11, 10 }, 
  { 12,  3,  4,  5,  8, 12, 12, 11 }, 
  { 11,  6,  7,  8,  9, 13, 13, 12 }, 
  { 10, 10, 11, 12, 13, 14, 14, 13 }, 
  {  9, 10, 11, 12, 13, 14, 15, 14 }, 
  {  8,  9, 10, 11, 12, 13, 14, 15 } 
} 
 
number_return_level[8][8] := 
{ 
  {  0,  1,  2,  3,  4,  5,  6,  7 }, 
  {  1,  0,  1,  2,  3,  4,  5,  6 }, 
  {  2,  1,  0,  1,  2,  3,  4,  5 }, 
  {  3,  2,  1,  0,  1,  2,  3,  4 }, 
  {  4,  3,  2,  1,  0,  1,  2,  3 }, 
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  {  5,  4,  3,  2,  1,  0,  1,  2 }, 
  {  6,  5,  4,  3,  2,  1,  0,  1 }, 
  {  7,  6,  5,  4,  3,  2,  1,  0 } 
} 

Figure 23 — Mapping for values m and l, Point10 item 

dIntensity: For this field, the uncompressed first item of the chunk shall be treated by all 
compressed items as if it had had an intensity of 0, i.e. ignoring the first item. 

Only stored if changed compared to the previous item that had the same value for m (m as defined 
in the field specification of Bit-Byte). If no such item has been processed yet, Intensity (previous 
item with same m) is considered to be 0. 

If not stored, bit 4 of Changed values is not set, otherwise it has to be set. Difference encoded with 
a 16-bit Integer Compressor: Intensity := ISum16(Intensity (previous item with same m), 
dIntensity), as specified in Clause 10.5.4. There are 4 different instances of the compressor, 

depending on the value for m: for m = 0 through 2, pick instance m. For m ≥ 3, pick instance 3. 

Classification: Only stored if changed compared to the last point that has been processed (i.e. bit 3 
of Changed values is set). Encoded using a symbol coder with 256 symbols. The Classification 
value of the previous item is used to select from 256 instances. 

dScan Angle Rank: Only stored if changed compared to the last point that has been processed (i.e. 
bit 2 of Changed values is set). The difference to the scan angle rank of the last processed point is 
stored. The symbol encoder only returns positive values (a byte value), and to store negative 
differences, the value wraps around, i.e. Scan Angle Rank := (Scan Angle Rank(previous item) + 
dScan Angle Rank) MOD 256. Encoded using a symbol coder with 256 symbols. There are 2 
instances, selected by the scan direction flag of the current item. 

User Data: Only stored if changed compared to the last point that has been processed (i.e. bit 1 of 
Changed values is set). Encoded using a symbol coder with 256 symbols. 256 instances are used, 
selected by the value for User Data of the previous item. 

dPoint Source ID: Only stored if changed compared to the last point that has been processed (i.e. 
bit 0 of Changed values is set). The difference to the Point Source ID of the last processed point is 
stored with a 16-bit Integer Compressor, i.e. Point Source ID := ISum16(Point Source ID 
(previous item), dPoint Source ID). It has only 1 instance. 

dX: The x coordinate is stored as the difference dX from an expected coordinate. The expected 
coordinate is the x coordinate of the previous item, plus the streaming median difference for the x 
coordinate of the previous items that had the same value m (i.e. there are up to 16 streaming 
medians). Encoded with a 32-bit Integer Compressor. There are 2 instances: one for n = 1 and one 
for n ≠ 1 (where n is the number of returns of given pulse as defined in the description of the field 
Bit-Byte). The coordinate X is then calculated as X := X (previous item) + ISum32(streaming 
median[m], dX). The value streaming median[m] + dX is then inserted to the streaming median list 
for m. 
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The streaming median is defined as: 

— keep a list of 5 values, ordered by size, initialized with 0 
— the streaming median is the 3rd out of the 5 ordered valued 
— when inserting a new value to the list, either the largest or the lowest value will be removed from 

the list, the new value is added, and the list is then reordered by size 
— the first insertion will always remove the largest value 
— if the next insertion will remove the lowest or the largest value depends on the inserted new 

value:  

    * if the added value is lower than the current streaming median value (i.e. the 3rd out of 5 values, 
before removing a value from the list), the next insertion will remove the largest value 

    * if the added value is larger than the current median value, the next insertion will remove the 
lowest value 

    * if the added value is equal to the current median value, the next insertion removes the opposite 
of the current insertion 

NOTE:  The first, uncompressed item of the chunk is not used for/inserted into the list of the 
streaming median. The streaming medians get reset / reinitialized at the beginning of each chunk. 

Figure 24 — Definition Streaming median 

Example — Example for streaming median 

— the list may be “1, 5, 5, 8, 9”, and the largest value shall be removed next  
— inserting “5” results in “1, 5, 5, 5, 8”, and the lowest value will be removed next (5 

is equal to the median value “5”, so the direction changes)  
— inserting “9” results in “5, 5, 5, 8, 9”, and the lowest value will be removed next (9 

is larger than the median value “5”, so the lowest value will be removed next)  
 

dY: The y coordinate is similarly to dX stored as the difference dY from an expected coordinate. 
The expected coordinate is the y-coordinate of the previous item, plus the streaming median 
difference for the y coordinate of the previous items that had the same value m (with 16 possible 
values for m). Note: the fields dX and dY have their own streaming medians. 

Encoded with a 32-bit Integer Compressor. The field has 22 instances. The instance is chosen by 
using the k value used while (de)compressing dX (the k value is a number of significant bits, used in 
the Integer (De-)Compressor). For each of the following 22 values for instance, a different instance 
has to be used: 

— if k < 20, set instance := 2 ⋅ ⌊
k

2
⌋ (this unsets bit 0)  

— else set instance := 20  
— if n = 1, set instance := instance + 1 (where n is the number of returns of given pulse as 

defined in the description of the field Bit-Byte)  

The coordinate Y is then calculated as Y := Y (previous item) + ISum32(streaming median[m], dY). 
The value streaming median[m] + dY is then inserted into the streaming median list for m. 

dZ: The z coordinate is stored as the difference dZ from the previous z-coordinate of the point with 
the same value l (as defined in the description for the field Bit-Byte), i.e. there can be 8 relevant 
previous z coordinates. If there has not been such a previous item (in the same chunk), it is 
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considered to has been 0. Also, the first, uncompressed item of the chunk is ignored for this, i.e., it 
is treated as having had a value Z of 0. 

Encoded with a 32-bit Integer Compressor, the field has 20 instances. The instance is chosen by 
using both k values used while (de-)compressing dX and dY. For each of the following 20 values for 
instance, a different instance has to be used: 

— set kXY := ⌊
k (used in dX)+k (used in dY)

2
⌋  

— if kXY < 18, set instance := 2 ⋅ ⌊
kXY

2
⌋ (this unsets bit 0)  

— else set instance := 18  
— if n = 1, set instance := instance + 1 (where n is the number of returns of given pulse as 

defined in the description of the field Bit-Byte)  

The coordinate Z is then calculated as Z := ISum32(Z (for last point with same l), dZ). (As 
described above, ignoring the value of the first, uncompressed item of the chunk.) 

13.2. GPSTime11 (version 2) 

The GPSTime11-item compresses one LAS field, GPS Time. It is part of LAS Point Data Record 
Formats 1, 3, 4 and 5. The format of the uncompressed item is as follows: 

Table 36 — GPSTime11-item format, uncompressed 

Field Name Format Size Required 

GPS Time double 8 bytes * 

The first entry per chunk is this uncompressed item. 

Details about the field are described in Annex A. 

LAZ treats double-precision floating-point GPS times as if they were signed 64 bit integers and 
predicts the deltas between them. 

NOTE:  The compression is independent of the GPS Time Type setting in the Global 
Encoding field in the LAS header, i.e. whether an offset is subtracted or not. 

It remembers up to four previously compressed GPS times with corresponding deltas. Keeping 
multiple prediction reference frames can account for repeated jumps in GPS time that arise when 
multiple flight paths are merged with fine spatial granularity. 

The compression works best if the GPS Times of a reference frame are monotonically increasing 
values with a more or less constant spacing in time. For random values, the compression will be 
inefficient and will usually require more than 8 bytes. 

For each reference frame (numbered 0 to 3), the following 3 variables are defined: 

— delta  
— counter: keeps track of how often the difference between GPS times is too large (or too low) 

and couldn’t be stored using low multiples of delta  
— previous GPS Time  

The initial reference frame shall be “0”, and the “next” reference frames shall be 1, 2, 3, 0 in that 
order. 

All variables are initialized with 0 at the start of each chunk. 
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The previous GPS time[0] for reference frame 0 is initialized with the GPS time of the first, 
uncompressed item. 

The current reference frame can be switched depending on the content of the fields. 

All reference frames share the same encoder instances. 

The compressed item is stored as follows: 

Table 37 — GPSTime11-item format, compressed 

Field Name Type Size Encoder 
No of 
instances 

Required 

cases 
array of 1 or 2 “case” or 
“case_0delta-fields” 

   * 

dGPS Time 
(low) 

long 
4 
bytes 

Integer Compressor, 
32 bits 

9  

GPS Time 
(extra) 

unsigned long 
4 
bytes 

Raw, 32 bit   

cases: An array that stores up to 2 case and/or case_0delta-fields. If a case or case_0delta-field 
comes next, depends on the delta[reference frame]: if it is 0, the next entry is a case_0delta, 
otherwise, a case-field. 

If the first entry is case = 513..515 or case_0delta = 3..5, the array contains two fields, otherwise 
just one. 

case_0delta is essentially a shorter version of the case-field, without all the case-options that use a 
multiple of delta, which are not relevant when delta is 0. 

Both can occur in arbitrary order. E.g., a GPS Time might be compressed using the fields “case, 
dGPSTime(low)”, another value might be compressed using “case, case_0delta, dGPSTime(low), 
dGPSTime(high)”. Which fields are needed will be decided based on the values in the cases-array. 

Table 38 — “Case” Array, GPSTime11 

Field Name Type Size Encoder No of instances Required 

case unsigned short 2 bytes 516 symbols   

case_0delta bits 3 bits 6 Symbols   

case: 

Table 39 — Values for field “case”, GPSTime11 

Value Description 

0 predicted with a delta of zero 

1–500 predicted using the current delta times 1 to 500 

501–510 predicted using the current delta times -1 to -10 

511 identical to the last gps time (of same reference frame) 

512 starting a new reference frame (using both dGPS Time (low) and GPS Time (extra)) 

513–515 predicted with one of the other three reference frames 

For each of the cases, a different encoder instance (of the 32-bit Integer Compressor) for the field 
dGPS Time (low) (with their own distribution table) has to be used (if the field is used at all). Their 
given numbers are arbitrary and just for convenience (and to align them with those of the 
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case_0delta-field). After processing a case, except 513..515, the previous GPS Time[reference 
frame] is set to the calculated GPS time. 

The cases are handled as follows: 

0: dGPS Time (low) is read with instance 7. The uncompressed GPS Time is previous GPS 
Time[reference frame] + ISum32(0, dGPS Time (low)). 

counter[reference frame] is increased by 1. If counter[reference frame] is > 3, delta[reference 
frame] is set to ISum32(0, dGPS Time (low)), and counter[reference frame] is set to 0. 

The GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

1: dGPS Time (low) is read with the instance 1. It contains the difference from delta of the current 
reference frame, i.e. GPS time := previous GPS Time[reference frame] + 
ISum32(delta[reference frame], dGPS Time (low)). 

counter[reference frame] is reset to 0. The GPS Time is complete after this, GPS Time (extra) is 
unused/skipped. 

2..499: dGPS Time (low) is read with the instance 2 for case = 2..9 and instance 3 for case = 
10..499. It contains the difference from case * delta[reference frame], i.e. GPS time := previous 
GPS Time[reference frame] + ISum32(case * delta[reference frame], dGPS Time (low)). The 
GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

500: dGPS Time (low) is read with the instance 4. It contains the difference from 500 * 
delta[reference frame], i.e. GPS time := previous GPS Time[reference frame] + ISum32(500 * 
delta[reference frame], dGPS Time (low)). 

counter[reference frame] is increased by 1. If counter[reference frame] is > 3, delta[reference 
frame] is set to ISum32(500 * delta[reference frame], dGPS Time (low)), and counter[reference 
frame] is set to 0. 

The GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

501..509: This is used for negative differences. dGPS Time (low) is read with the instance 5. GPS 
time is calculated as previous GPS Time[reference frame] + ISum32(- (case — 500) * 
delta[reference frame], dGPS Time (low)). The GPS Time is complete after this. 

510: This is also used for negative differences. dGPS Time (low) is read with the instance 6. GPS 
time is calculated as previous GPS Time[reference frame] + ISum32(- 10 * delta[reference 
frame], dGPS Time (low)). 

counter[reference frame] is increased by 1. If counter[reference frame] is > 3, delta[reference 
frame] is set to ISum32(- 10 * delta[reference frame], dGPS Time (low)), and counter[reference 
frame] is set to 0. 

The GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

511: The GPS time has not changed, GPS time is set to previous GPS Time[reference frame]. 
Both dGPS Time (low) and GPS Time (extra) are unused/skipped. 

512: The gps time is stored using both time fields. (Due to the ambiguity in interpreting the numbers, 
the data types are specified, as the integer compressor returns 32 bit signed integer values, and the 
gps time is a 64 bit floating point value treated as a 64 bit unsigned integer). First, the instance 8 (of 
the 32-bit Integer Compressor) for dGPS Time (low) and the RAW encoder (32 bit) for GPS Time 
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(extra) are used to calculate (unsigned long long)tmp := (unsigned long long) ISum32( (signed 
integer)((unsigned long long)previous GPS Time[reference frame] RIGHT SHIFT BY 32 
BITS),dGPS Time (low)) LEFT SHIFT BY 32 BITS + GPS Time (extra). 

Then the current reference frame is changed to the next reference frame in line (in the order 0, 1, 2, 
3, 0). GPS Time is then set to tmp. The previous GPS Time[reference frame] for the 
new/changed reference frame is then set to GPS Time (while previous GPS Time for the previous 
reference frame is unchanged). delta[reference frame] and delta[reference frame] (for the new 
reference frame) are set to 0. 

The GPS Time is complete after this. 512 is only allowed to be the first entry in the cases-array. 

513..515: The current reference frame is changed to the 1st (513), 2nd (514) or 3rd (515) 
successor, in the order 0, 1, 2, 3, 0. Then, the next entry in the cases array is evaluated. 513..515 
are only allowed to be the first entry in the cases-array. previous GPS Time[reference frame] is 
not changed here. 

case_0delta: 

Table 40 — Values for field “case_0delta”, GPSTime11 

Value Description 

0 identical to the last gps time (of same reference frame) 

1 stored using just dGPS Time (low) 

2 starting a new reference frame (using both dGPS Time (low) and GPS Time (extra)) 

3-5 predicted with one of the other three reference frames 

The field case_0delta is a shorter version of the case-field, for cases where delta[reference 
frame] = 0 (so the multiplications for case 0 to 510 are not relevant). The instance numbers are the 
same as used for the case field. After processing a case, except 3..5, the previous GPS 
Time[reference frame] is set to the calculated GPS time. The cases are: 

0: Identical to case = 511 (no change). 

1: dGPS Time (low) is read with the instance 0, and GPS time := previous GPS Time[reference 
frame] + ISum32(0, dGPS Time (low)). delta[reference frame] is set to ISum32(0, dGPS Time 
(low)). (Note that this, and the instance number, differ from case = 1). 

counter[reference frame] is reset to 0. The GPS Time is complete after this, GPS Time (extra) is 
unused/skipped. 

2: Identical to case = 512 (stored using both dGPS Time (low) and GPS Time (extra)). 2 is only 
allowed to be the first entry in the cases-array. 

3..5: Analogous to case = 513..515: The current reference frame is changed to the 1st (3), 2nd (4) 
or 3rd (5) successor, in the order 0, 1, 2, 3, 0. Then, the next entry in the cases array is evaluated. 
3..5 are only allowed to be the first entry in the cases-array. previous GPS Time[reference frame] 
is not changed here. 

dGPS Time (low): Stored using a 32-bit Integer Compressor with 9 different instances. Usage is 
described above. May not be stored, depending on the case/case_0delta values. 

GPS Time (extra): Stored using a Raw Encoder with 32 bits. Only stored if the full gps time has to 
be stored (i.e. for case = 512 and case_0delta = 2). Usage is described above. 
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13.3. RGB12 (version 2) 

The RGB12-item compresses the Red, Green and Blue-fields that are part of LAS Point Data 
Record Formats 2, 3 and 5. The format of the uncompressed item is as follows: 

Table 41 — RGB12-item format, uncompressed 

Field Name Format Size Required 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

The first entry per chunk is this uncompressed item. 

This first item is considered the previous item for the first compressed item. 

Details about the fields are described in Annex A. 

The compressed item first stores a field that indicates which bytes are changed. The high and low 
bytes of the red, green and blue channel are treated separately. If they changed, only the difference 
to the corresponding value of the previous item is stored. 

As there is often a correlation between changes to the red, green, and blue channels (e.g. if the 
intensity for a gray color changes), the delta for the red channel is added to the green channel first, 
and only the difference to that is stored. For the blue channel, the average delta of the red and 
green channel is used. 

For use in the following fields, the algorithm “clamp255”, which sets values above 255 to 255 and 
values below 0 to 0, is defined as: 

function clamp255(n): 
* one parameter, a number 

  if n < 0 
  then 
      return 0 
  else if n > 255 
  then 
      return 255 
  else 
      return n 

Figure 25 — Algorithm clamp255(), Pseudocode 

Note: the lower byte of a short value is value & 0x00FF, the higher byte of a short value is (value & 
0xFF00) >> 8. 

The compressed item is stored as follows: 

Table 42 — RGB12-item format, compressed 

Field Name Type Size Encoder No of instances Required 

Changed values bits 7 bits 128 Symbols 1 * 

dRed (low) byte 1 byte 256 Symbols 1  

dRed (high) byte 1 byte 256 Symbols 1  

dGreen (low) byte 1 byte 256 Symbols 1  
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Field Name Type Size Encoder No of instances Required 

dGreen (high) byte 1 byte 256 Symbols 1  

dBlue (low) byte 1 byte 256 Symbols 1  

dBlue (high) byte 1 byte 256 Symbols 1  

Changed values: Indicates, which of the fields have been changed. Only changed fields are stored. 

Table 43 — Bit values for field “Changed values”, RGB12 

Bit Description 

0 Field dRed (low) is stored, otherwise dRed (low) is 0 

1 Field dRed (high) is present, otherwise dRed (high) is 0 

2 Field dGreen (low) is present, otherwise dGreen (low) is 0 

3 Field dGreen (high) is present, otherwise dGreen (high) is 0 

4 Field dBlue (low) is present, otherwise dBlue (low) is 0 

5 Field dBlue (high) is present, otherwise dBlue (high) is 0 

6 (Uncompressed) Green and Blue are identical to Red, bits 2-5 are ignored 

If bit 6 is set, Green and Blue are equal to the uncompressed value of Red (i.e. after processing 
dRed (low) and dRed (high)). In that case, bits 2 to 5 are ignored, the fields dGreen (low), dGreen 
(high), dBlue (low) and dBlue (high) are not stored, and the calculation described below for Green 
and Blue based on those fields is not used. 

dRed (low): Only stored if bit 0 of Changed values is set, otherwise considered 0. Stores the delta 
to the lower bit of Red of the previous item. The sum is then mapped to 0..255, using modulo 256 
and adding 256 if negative. I.e. lower byte of Red := (lower byte of Red (previous item) + dRed 
(low) + 256) MOD 256. 

dRed (high): Only stored if bit 1 of Changed values is set, otherwise considered 0. Stores the delta 
to the higher bit of Red of the previous item. The sum is then mapped to 0..255. I.e. higher byte of 
Red := (higher byte of Red (previous item) + dRed (high) + 256) MOD 256. 

Note: The remaining four fields are only used if bit 6 of Changed values is not set. 

dGreen (low): Only stored if bit 2 of Changed values is set (and bit 6 is not set), otherwise the 
lower byte of Green is the same as the lower byte of Green of the previous item. If stored, the 
difference for the Red value is added first, and dGreen (low) stores only the difference to that. 

Calculate diff := lower byte of Red — lower byte of Red (previous item). This value is added to 
the previous value of the lower byte of Green, clamping the sum to 255 (as defined above). Then, 
the total sum is mapped to 0..255. I.e. lower byte of Green := (dGreen (low) + clamp255(lower 
byte of Green (previous item) + diff) + 256) MOD 256. 

dGreen (high): Only stored if bit 3 of Changed values is set (and bit 6 is not set), otherwise the 
higher byte of Green is the same as the higher byte of Green of the previous item. If stored, similar 
to dGreen (low), the difference for the Red value is calculated, clamped and added: 

Calculate diff := higher byte of Red — higher byte of Red (previous item). This value is added to 
the previous value of the higher byte of Green, clamping the sum to 255. Then, the total sum is 
mapped to 0..255. I.e. higher byte of Green := (dGreen (low) + clamp255(higher byte of Green 
(previous item) + diff) + 256) MOD 256. 

dBlue (low): Only stored if bit 4 of Changed values is set (and bit 6 is not set), otherwise the lower 
byte of Blue is the same as the lower byte of Blue of the previous item. If stored, the average 
difference for the Red and Green value is added first: 
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Calculate diff := round_towards_0( (lower byte of Red — lower byte of Red (previous item) + 
lower byte of Green — lower byte of Green (previous item)) / 2 ), with round_towards_0() as 
defined in Conventions (i.e. rounding down above 0, and rounding up below 0), and then clamping it 
to 255. Then, the total sum is mapped to 0..255. I.e. lower byte of Blue := (dBlue (low) + 
clamp255(lower byte of Blue (previous item) + diff) + 256) MOD 256. 

dBlue (high): Only stored if bit 5 of Changed values is set (and bit 6 is not set), otherwise the 
higher byte of Blue is the same as the higher byte of Blue of the previous item. As for dBlue (low), 
the average difference for the Red and Green value is added first: 

Calculate diff := round_towards_0( (higher byte of Red — higher byte of Red (previous item) + 
higher byte of Green — higher byte of Green (previous item)) / 2 ), rounding towards 0, and then 
clamping it to 255. Then, the total sum is mapped to 0..255. I.e. lower byte of Blue := (dBlue (low) 
+ clamp255(higher byte of Blue (previous item) + diff) + 256) MOD 256. 

13.4. BYTE (version 2) 

The BYTE-item compresses any additional bytes that are optionally appended to LAS Point Data 
Record Formats 0 through 5. The number of bytes, n, is declared in in the LAZ VLR, specified in 
Clause 7. The uncompressed item looks as: 

Table 44 — BYTE-item format, uncompressed 

Field Name Format Size Required 

Bytes byte[n] n bytes * 

The first entry per chunk is this uncompressed item. 

This uncompressed item is considered the previous item for the first compressed item. 

LAZ compresses each byte separately, and stores only the difference to the corresponding byte in 
the previous item. 

The compressed item is stored as follows: 

Table 45 — BYTE-item format, compressed 

Field Name Type Size Encoder No of instances Required 

dBytes byte[n] n byte 256 Symbols n * 

dBytes: Array of n bytes, using a separate symbol encoder for each of the n bytes (each with 256 
symbols). Stores the difference to the corresponding byte of the previous item. The sum is then 
mapped to 0..255, using modulo 256 and adding 256 if negative. I.e. the uncompressed Bytes[i] := 
(Bytes[i] (previous item) + dBytes[i] + 256) mod 256. 

13.5. Wavepacket13 (version 1) 

The Wavepacket13-item compresses the Waveform data that are part of LAS Point Data Record 
Formats 4 and 5. The format of the uncompressed item is as follows: 

Table 46 — Wavepacket13-item, uncompressed 

Field Name Format Size Required 

Wave Packet Descriptor Index unsigned char 1 byte * 

Byte Offset to Waveform Data unsigned long long 8 bytes * 

Waveform Packet Size in Bytes unsigned long 4 bytes * 
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Field Name Format Size Required 

Return Point Waveform Location float 4 bytes * 

Parametric dx float 4 bytes * 

Parametric dz float 4 bytes * 

Parametric dz float 4 bytes * 

The first entry per chunk is this uncompressed item. 

It is considered the previous item for the first compressed item. 

Details about the fields are described in Annex A. 

All LAS floating point values are treated as signed 32-bit integer values (i.e. uses the byte 
representation of the floating point values as is). 

All fields except the Byte Offset to Waveform Data are stored in a straight forward way using the 
specified encoder. That offset-field however uses an additional 2-bit field that determines 4 cases: 
(0) the value is the same as the offset of the previous item, (1) it just differs by the packet size of the 
previous item, (2) the difference is small enough to be stored with just 4 bytes, and (3) the full 8 byte 
value is stored. 

The compressed item is stored as follows: 

Table 47 — Wavepacket13-item, compressed 

Field Name Type Size Encoder 
No of 
instances 

Required 

Wave Packet Descriptor 
Index 

byte 1 byte 256 Symbols 1 * 

Offset Diff Type bits 2 bits 4 Symbols 4 * 

dOffset Diff (low) long 4 bytes 
Integer Compressor, 32 
bits 

1  

Offset (full) 
long 
long 

8 bytes Raw, 64 bit 1  

dPacket Size long 4 bytes 
Integer Compressor, 32 
bits 

1 * 

dReturn Point long 4 bytes 
Integer Compressor, 32 
bits 

1 * 

dPdXYZ long[3] 
12 
bytes 

Integer Compressor, 32 
bits 

3 * 

Wave Packet Descriptor Index: Stored using a symbol encoder with 256 symbols. 

Offset Diff Type: Stored using a symbol encoder with 4 symbols, and 4 different instances. The 
instance is chosen by the value of Offset Diff Type of the previous item, or 0 for the first 
compressed item (as the uncompressed first item does not have this field). Encodes how Byte 
offset to waveform data is compressed: 

0: Byte Offset to Waveform Data is the same as the value from the previous item. dOffset Diff 
(low) and Offset (full) are not stored or used. 

1: The offset is increased by the packet size of the previous item, Byte Offset to Waveform Data := 
Byte Offset to Waveform Data (previous item) + Waveform Packet Size in Bytes (previous 
item). dOffset Diff (low) and Offset (full) are not stored. 
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2: Byte Offset to Waveform Data can be encoded with just a small difference, called Offset Diff, to 
the previous item. Stored in dOffset Diff (low) is only the difference to the last value of Offset Diff 
used in this chunk (i.e. by the last item that had an Offset Diff Type of 2) or to 0, if it has not been 
used yet. I.e. Byte Offset to Waveform Data := Byte Offset to Waveform Data (previous item) + 
ISum32(Offset Diff (previous item with Offset Diff Type of 2), dOffset Diff (low)). Note that 
Offset Diff is only used when Offset Diff Type is 2. Offset (full) is not stored for this Offset Diff 
Type. 

3: Byte Offset to Waveform Data is stored as the full 8 byte value in Offset (full), i.e. Byte offset 
to waveform data := Offset (full). Offset Diff (low) is not stored. 

dOffset Diff (low): Only stored if Offset Diff Type is 2, using a 32-bit Integer Compressor. Used as 
described above. 

Offset (full): Only stored if Offset Diff Type is 3. Using a Raw integer encoder with 64 bits, 
contains the full Byte offset to waveform data value. 

dPacket Size: Using a 32-bit Integer Compressor, stores the difference to the previous value of 
Waveform Packet Size in Bytes, i.e. Waveform Packet Size in Bytes:= ISum32(Waveform 
Packet Size in Bytes (previous item), dPacket Size). 

dReturn Point: Using a 32-bit Integer Compressor, stores the difference to the previous value of 
Return Point Waveform Location, i.e. Return Point Waveform Location := ISum32(Return 
Point Waveform Location (previous item), dReturn Point). Note that the LAS floating point value 
Return Point Waveform Location is treated as a signed 32-bit integer value in this calculation. 

dPdXYZ: An array of 3 values, namely dPdx, dPdy and dPdz. Those store the difference to the 
Parametric dx, Parametric dx and Parametric dz values to those values of the previous item, 
where the floating point values are treated as signed long integer values, i.e. the difference is taken 
from and added to the 4-byte representation of the floating point value: Parametric dx (as signed 
32 bit integer) := ISum32(Parametric dx (as signed 32 bit integer) (previous item), dPdx), and 
the same for Parametric dy and Parametric dz. Using a 32-bit Integer Compressor with 3 
instances, one for each of dPdx, dPdy and dPdz. Note that this is not the same as storing the 3 
fields using a separate 32-bit Integer Compressor for each, as they share the symbol encoders for 
k, as described in Clause 10.5. 
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14. LAZ Items, LAS formats 6 to 10 

14.1. Point14 (version 3) 

The Point14-item is the common part for all LAS point types 6 to 10. The uncompressed fields are 
the following: 

Table 48 — Point14-item format (LAS Point Data Record Format 6), uncompressed 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

Classification Flags 4 bits (bits 0 — 3) 4 bits  

Scanner Channel 2 bits (bits 4 — 5) 2 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

User Data unsigned char 1 byte  

Scan Angle short 2 bytes * 

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

The first entry per chunk is this uncompressed item. 

Details about the fields are described in Annex A. 

The item has 4 contexts, which means 4 sets of all encoder instances (all initialized independently). 
The previous item used is always the previous item from the same context (so there are 4 previous 
items). 

The initial previous item of the context is selected when a context is first used, as specified in 
Clause 12.2: the uncompressed item for context 0, and for the other contexts a later item that is 
determined by when the context has been switch. 

This initial item of a context is considered the previous item for the first compressed item in this 
context. Additionally, it is used as a fallback item in calculations for the fields dZ, dIntensity and to 
initialize previous GPS Time[0] for the GPS-calculation. This is described in the field specifications. 

The context 0 to 3 is selected by the value of the field Scanner Channel (values 0 to 3). For that, 
first, the field Changed values has to be read (or written), and, if it indicates that the Scanner 
Channel has been changed, also the field Scanner Channel. For those 2 fields, the context of the 
previous item is used. The context is then switched to number Scanner Channel (that has just been 
processed), and this new context is used for the remaining fields of the item. 

The compressed item is stored using 9 layers and is stored the following way: 
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Table 49 — Point14-item format, compressed 

Field Name Type Size Encoder 
No of 
instances 

Required Layer 

Changed values bits 7 bits 128 Symbols 8 * 1 

dScanner 
Channel 

bits 2 bits 3 Symbols 1  1 

Number of 
returns (given 
pulse) 

4 bits 4 bits 16 Symbols 16  1 

dReturn Number 
(same time) 

bits 4 bits 13 Symbols 1  1 

Return Number 
(different time) 

bits 4 bits 16 Symbols 16  1 

dX long 4 bytes 
Integer 
Compressor, 32 
bits 

2  1 

dY long 4 bytes 
Integer 
Compressor, 32 
bits 

22  1 

dZ long 4 bytes 
Integer 
Compressor, 32 
bits 

20  2 

Classification unsigned char 1 byte 256 Symbols 64  3 

Flags bits 6 bits 64 Symbols 64  4 

dIntensity short 2 bytes 
Integer 
Compressor, 16 
bits 

4  5 

dScan Angle short 2 bytes 
Integer 
Compressor, 16 
bits 

2  6 

User Data unsigned char 1 byte 256 Symbols 64  7 

dPoint Source ID short 2 bytes 
Integer 
Compressor, 16 
bits 

1  8 

GPS cases 
array of 1 or 2 “gps 
case” or “gps 
case_0delta-fields” 

    9 

dGPS Time (low) long 4 bytes 
Integer 
Compressor, 32 
bits 

9  9 

GPS Time (extra) unsigned long 4 bytes Raw, 32 bit   9 

The first layer and the field Changed values is always present, all others are optional. For the first 
layer, the field Changed values specifies which fields are stored. The fields of the other layers can 
be missing as the layers can have size 0. Additionally, the GPS-fields (layer 9) dGPS Time (low) 
and GPS Time (extra) are optional, specified by the GPS cases-field. 

Changed Values: Bit-mask of 7 bits that specifies whether any of the next 6 fields have changed in 
comparison to the previously processed item (of any context, and where the uncompressed item is 
considered the first processed item). If an attribute has not changed, the bit is not set, and the value 
of that field is not stored in the data stream (i.e. not en-/decoded, and has to be skipped in the 
decoding). Bits 1 and 0 are used to mark if the return number has changed by 0, -1 or +1, or more. 
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Only if it has changed by more than 1, it is stored in the data stream. Stored using the symbol coder 
with 128 symbols (7 bits). 

For later use, the value cpr is defined as 

— cpr := 3 (single return) if return number = 1 and number of returns < 2  
— cpr := 2 (first return) if return number = 1 and number of returns > 1  
— cpr := 1 (last return) if return number ≠ 1 and return number ≥ number of returns  

— cpr := 0 (intermediate return) if return number ≠ 1 and return number < number of returns  

Additionally, define cprgps := cpr * 2 + {1 if bit 4 of Changed Values is set}. For the first item (i.e. 
the item stored uncompressed in the beginning of the chunk), that 4th bit is defined as unset 
(although it did not have that field, as it was not compressed).  

The field Changed Values uses 8 different instances, which is selected by the value of cprgps of 
the previously processed item. 

The bitmask is defined as follows: 

Table 50 — Bit mask for field “Changed value”, Point14 

Bit Field 

6 1: Field “dScanner channel” changed, 0: unchanged 

5 1: Field “Point source” changed, 0: unchanged 

4 1: Field(s) “gps time” changed, 0: unchanged 

3 1: Field “scan angle” changed, 0: unchanged 

2 1: Field “number of returns” changed, 0: unchanged 

0-1 
0: Return number unchanged, 1: Return number is +1 from previous item, 2: Return number 
-1 from previous item, 3: stored in the data stream 

dScanner Channel: Only stored if bit 6 of Changed Values is set, i.e. if changed to the previous 
item processed (with the uncompressed item considered to be the first processed item), otherwise 
Scanner Channel is the same value as the value from the previous item. Stored using a symbol 
encoder with 3 Symbols as a difference: Scanner Channel := (Scanner Channel (previous item) 
+ dScanner Channel + 1) MOD 4. 

NOTE 1:  As described in contexts, the Scanner Channel defines which of the 4 context to use 
for all the remaining fields and the fields of the other items, so a context switch may occur after 
processing this field. The previous item of this context (which many of the following fields used to 
compare with or to calculate the difference from) is specific to the context, i.e. each context has a 
different previous item. This also applies to averages or the running median, they are also context 
specific. 

Number of returns (given pulse): Only stored if bit 2 of Changed Values is set, otherwise the 
value from the previous item is used (of the same context; note that this field is the first field using 
the context selected by the value of Scanner Channel). Stored using a symbol encoder with 16 
symbols and 16 instances. The instance is chosen by the value Number of returns (given pulse) 
of the previous item of the same context. 

dReturn Number (same time): Only stored if bit 0 and 1 of Changed Values are set and bit 4 (“gps 
changed”) is not set. Stored using a symbol encoder with 13 symbols and 1 instance. The 
uncompressed Return Number is then calculated as Return Number := (Return Number 
(previous item of same context) + dReturn Number (same time) + 2) MOD 16. The next field 
specifies the other cases. 
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Return Number (different time): Only stored if bit 0 and 1 and 4 of Changed Values are set. 
Stored using a symbol encoder with 16 symbols and 16 instance. The instance is chosen by the 
value Return Number of the previous item of the same context. The uncompressed Return 
Number is then the value Return Number (different time). 

In the other cases, the Return Number is calculated from the information in the bits 0 and 1 of 
Changed Values: 

— Bit 0 is 0 and bit 1 is 0: Return Number := Return Number (previous item of the same 
context)  

— Bit 0 is 1 and bit 1 is 0: Return Number := (Return Number (previous item of the same 
context) + 1) MOD 16  

— Bit 0 is 0 and bit 1 is 1: Return Number := (Return Number (previous item of the same 
context) + 15) MOD 16  

— Bit 0 is 1 and bit 1 is 1: Return Number is calculated from dReturn Number (same time) or 
Return Number (different time) depending on bit 4, see above.  

From the uncompressed values r := Return number ( 0 ≤ r ≤ 15 ) and n := Number of returns 

(given pulse) ( 0 ≤ n ≤ 15 ), for use in the next calculations two values are defined: m, which 
serializes the combinations for r and n (valid and invalid ones, and reduced to 6 different cases), 
and l, the return level (how many returns there have already been prior to this return, including valid 
and invalid combinations, and reduced to 8 different cases): 

m := number_return_map_6ctx[n][r] 
l := number_return_level_8ctx[n][r] 
 
number_return_map_6ctx[16][16] := 
{ 
  { 0, 1, 2, 3, 4, 5, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5 }, 
  { 1, 0, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, 
  { 2, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3 }, 
  { 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }, 
  { 4, 3, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }, 
  { 5, 3, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }, 
  { 3, 3, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4 }, 
  { 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4 }, 
  { 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4 }, 
  { 5, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4 }, 
  { 5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4 }, 
  { 5, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4 }, 
  { 5, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4 }, 
  { 5, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4 }, 
  { 5, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5 }, 
  { 5, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5 } 
} 
 
number_return_level_8ctx[16][16] := 
{ 
  { 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7 }, 
  { 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7 }, 
  { 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7 }, 
  { 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7 }, 
  { 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7 }, 
  { 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7 }, 
  { 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7 }, 
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  { 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7 }, 
  { 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7 }, 
  { 7, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 }, 
  { 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 }, 
  { 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4 }, 
  { 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3 }, 
  { 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2 }, 
  { 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1 }, 
  { 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 0 } 
} 

Figure 26 — Mapping for values m and l, Point14-item 

NOTE 2:  These constants differ from the corresponding constants for the Point10 item. E.g., m 
and l only have 6 and 10 different values now, i.e. the map has been simplified, as higher 
combinations tend to not have significant entropy differences. 

Additionally, set mgps := m * 2 + {1 if bit 4 of field Changed value is set}. With 0 ≤ m ≤ 5 , this 

means 0 ≤ mgps ≤ 11 . This value is used in dX and dY. 

dX: The x coordinate is stored as the difference dX from an expected coordinate. The expected 
coordinate is the x coordinate of the previous item of the same context, plus the streaming median 
difference for the x coordinate of the previous items of the same context that had the same value of 
mgps (as defined above), i.e. up to 12 medians for each of the 4 contexts. Encoded with a 32-bit 

Integer Compressor and two instances: one for n = 1 and one for n ≠ 1 (where n is the Number of 
returns (given pulse)). The coordinate X is then calculated as X := X (previous item of the same 
context) + ISum32(streaming median[mgps], dX). The value ISum32(streaming median[m], dX) 
is then inserted to the streaming median list for mgps (of this context). 

The streaming median is defined in the specification for the dX-field of the Point10-item. 

Each context has its own set of streaming medians. Also, each field (i.e. dX and dY) has their own 
medians. Note that the medians also get reset at the beginning of a chunk. Just as for Point10-
items, the first, uncompressed item of the chunk is not used for the medians. 

Note: ISum32() for decoding (and the corresponding IDiff32() for encoding) is specified with the 
Integer (De-)Compressor, as well as ISum16() used below. 

dY: The y coordinate is similarly to dX stored as the difference dY from an expected coordinate. 
The expected coordinate is the y-coordinate of the previous item, plus the streaming median 
difference for the y coordinate of the previous items that had the same value mgps, i.e. up to 12 
medians per context. 

Encoded with a 32-bit Integer Compressor. The field has 22 instances. The instance is chosen by 
using the k value used while (de-)compressing dX (the k value is a number of significant bits, used 
in the Integer (De-)Compressor). For each of the following 22 values for instance, a different 
instance shall be used: 

— if k < 20, set instance := 2 ⋅ ⌊
k

2
⌋ (which unsets bit 0)  

— else set instance := 20  
— if n = 1, set instance := instance + 1 (where n is the Number of returns (given pulse) of this 

item)  
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The coordinate Y is then calculated as Y := Y (previous item of the same context) + 
ISum32(streaming median[mgps], dY). The value ISum32(streaming median[m], dY) is then 
inserted into the streaming median list for mgps (of this context). 

NOTE 3:  Each of the following fields (up to the GPS fields) is using their own layer, i.e. a 
different data stream each (see Clause 11.7).  

dZ: The z coordinate is stored as the difference dZ from Z (previous item with same l and the 
same context) (with l as defined in the map for l and m), i.e. one of 8 previous z coordinates for 
each of the 4 contexts. 

If no item with the same value of l has been processed yet in the current context, Z (initial item of 
the context) is used instead of Z (previous item with same l and the same context). 

Encoded with a 32-bit Integer Compressor, the field has 20 instances. The instance is chosen by 
using both k values used while (de-)compressing dX and dY. For each of the following 20 values for 
instance, a different instance has to be used: 

— set kXY := ⌊
k (used in dX)+k (used in dY)

2
⌋  

— if kXY < 18, set instance := 2 ⋅ ⌊
kXY

2
⌋ (which unsets bit 0)  

— else set instance := 18  
— if n = 1, set instance := instance + 1 (where n is the Number of Returns (given pulse)).  

The coordinate Z is then calculated as Z := Z (for previous item with same l and the same 
context) + dZ. 

Classification: Encoded using a symbol coder with 256 symbols with 64 instances. The instance 
number is chosen by calculating (Classification (previous item of the same context) mod 32) * 2 
+ { 1 if return number = 1 and Number of returns (given pulse) < 2 } (i.e. a value between 0 and 
63). 

Flags: 6-bit value that is composed of the (uncompressed) fields Classification Flags (as bits 0 to 
3), Scan Direction Flag (as bit 4) and Edge of Flight Line (as bit 5). Stored using a symbol 
encoder with 64 symbols with 64 instances. The value of Flags from the previous item of the same 
context is used to select the instance. 

NOTE 4:  The uncompressed item contains the additional flag Scanner Channel, which is 
compressed using the field dScanner Channel and not part of Flags, so the bit positions are 
different in this Flag-field and the corresponding flags in the uncompressed item. 

dIntensity: Difference encoded value with a 16-bit Integer Compressor with 4 instances. The 
instance is chosen by the value cpr (of the current item) as defined for the field Changed Values. 

Only the difference to Intensity (previous item of the same context with the same cprgps) is 
stored, i.e. the uncompressed value is calculated as Intensity := ISum16(Intensity (previous item 
of the same context with the same cprgps), dIntensity), which includes an additional mapping as 
specified in ISum16(). 

If no previous item with the same cprgps has been processed yet, the Intensity (initial item of the 
context) is used instead of Intensity (previous item of the same context with the same cprgps). 

dScan Angle: Only stored if changed compared to the last item of the same context, i.e. if bit 3 of 
Changed values is set. Stored using a 16-bit Integer Compressor with 2 instances. The instance is 
selected by whether the bit 4 (“gps changed”) of Changed values is set or not. Only the difference 
to the Scan angle of the last item (of the same context) is stored, i.e. the uncompressed value is 
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calculated as Scan Angle := ISum16(Scan Angle (previous item of the same context), dScan 
Angle), which includes an additional mapping as specified in ISum16(). 

User Data: Encoded using a symbol coder with 256 symbols and 64 instances. The instance 

number is selected by calculating ⌊
User Data (previous item of the same context)

4
⌋ . 

dPoint Source ID: Only stored if changed compared to the last item of the same context, i.e. if bit 5 
of Changed values is set. Stored using a 16-bit integer encoder. Only the difference to the Point 
Source ID of the last item (of the same context) is stored, i.e. the uncompressed value is calculated 
as Point Source ID := ISum16(Point Source ID (previous item of the same context), dPoint 
Source ID), which the additional mapping as specified in ISum16(). 

NOTE 5:  The 3 following fields GPS cases, dGPS Time (low) and GPS Time (extra) share a 
layer and are, in combination, used to store the uncompressed field GPS time. They are only stored 
if bit 4 of Changed values is set. 

NOTE 6:  The GPS data is stored very similarly, but not identically, to the GPSTIME11-item; 
specifically, the case and case_0delta-fields both have one less value, as the situation “identical to 
the last gps time” (values 511 for case and 0 for case_0delta) is already covered by bit 4 of 
Changed values. 

LAZ treats the LAS floating point GPS times as integer values (i.e. just stores their byte value, and 
does integer calculations with those values). 

LAZ stores GPS times of items with respect to one of four reference frames, which the gps times 
are sorted into. 

For each reference frame (numbered 0 to 3), the values delta, a counter, and the previous GPS 
Time are remembered. counter keeps track of how often the difference between GPS times is too 
large (or too low) and couldn’t be stored using low multiples of delta; if it happens too often, delta 
will be set to the current difference. 

Each of the 4 contexts has its own set of reference frames and values for delta, counter and the 
previous GPS Time. 

The initial reference frame will be “0”, and the “next” reference frame will be 1, 2, 3, 0 in that order. 

All values are initialized with 0. The current reference frame can be switched depending on the 
content of the fields. 

previous GPS Time[0] is initialized with the GPS Time (initial item of the context). 

All reference frames (of the same context) share the same encoder instances, and especially the 
same distribution tables. 

GPS cases: Only stored if bit 4 of Changed values is set, otherwise, the uncompressed field GPS 
time is the same as the GPS time of the previous item of the same context. 

An array that stores up to 2 case and/or case_0delta-fields. If a case or case_0delta-field comes 
next, depends on the delta[reference frame] of the same context: if it is 0, the next entry is a 
case_0delta, otherwise, a case-field. 

If the first entry is case = 512..514 or case_0delta = 2..4, the array contains two entries, otherwise 
just one. 
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case_0delta is essentially a shorter version of the case-field, without all the case-options that use a 
multiple of delta, which are not relevant when delta is 0. 

Both can occur in arbitrary order. E.g., a GPS Time might be compressed using the fields “case, 
dGPSTime(low)”, another value might be compressed using “case, case_0delta, dGPSTime(low), 
dGPSTime(high)”. Which fields are needed will be decided on-the-fly. 

Table 51 — “GPS Case” Array, Point14 

Field Name Type Size Encoder No of instances Required 

case unsigned short 2 bytes 515 symbols   

case_0delta bits 3 bits 5 Symbols   

case: 

Table 52 — Values for field “case”, Point14 

Value Description 

0 predicted with a delta of zero 

1–500 predicted using the current delta times 1 to 500 

501–510 predicted using the current delta times -1 to -10 

511 starting a new reference frame (using both dGPS Time (low) and GPS Time (extra)) 

512–514 predicted with one of the other three reference frames 

For each of the cases, a different encoder instance (of the 32-bit Integer Compressor) for the field 
dGPS Time (low) (with their own distribution table) has to be used (if the field is used at all). Their 
given numbers are arbitrary and just for convenience (and to align them with those of the 
case_0delta-field). After processing a case, except 512..514, the previous GPS Time[reference 
frame] is set to the calculated GPS time. 

The cases are handled as follows: 

0: dGPS Time (low) is read with instance 7. The uncompressed GPS Time := previous GPS 
Time[current reference frame] of the same context + ISum32(0, dGPS Time (low)). 

counter[reference frame] of the same context is increased by 1. If counter[reference frame] of 
the same context is > 3, delta[reference frame] of the same context is set to ISum32(0, dGPS 
Time (low)), and counter[reference frame] of the same context is set to 0. 

The GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

1: dGPS Time (low) is read with instance 1. It contains the difference from delta of the current 
reference frame, i.e. GPS time := previous GPS Time[reference frame] of the same context + 
ISum32(delta[reference frame] of the same context, dGPS Time (low)). 

counter[reference frame] of the same context is reset to 0. The GPS Time is complete after this, 
GPS Time (extra) is unused/skipped. 

2..499: dGPS Time (low) is read with instance 2 for case = 2..9 and instance 3 for case = 10..499. 
It contains the difference from case * delta[reference frame] of the same context, i.e. GPS time 
:= previous GPS Time[reference frame] of the same context + ISum32(case * delta[reference 
frame] of the same context, dGPS Time (low)). The GPS Time is complete after this, GPS Time 
(extra) is unused/skipped. 
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500: dGPS Time (low) is read with the instance 4. It contains the difference from 500 * 
delta[reference frame] of the same context, i.e. GPS time := previous GPS Time[reference 
frame] of the same context + ISum32(500 * delta[reference frame] of the same context, dGPS 
Time (low)). 

counter[reference frame] of the same context is increased by 1. If counter[reference frame] of 
the same context is > 3, delta[reference frame] of the same context is set to ISum32(500 * 
delta[reference frame] of the same context, dGPS Time (low)), and counter[reference frame] 
of the same context is set to 0. 

The GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

501..509: This is used for negative differences. dGPS Time (low) is read with instance 5. GPS time 
is calculated as previous GPS Time[reference frame] of the same context + ISum32(- (case - 
500) * delta[reference frame] of the same context, dGPS Time (low)). The GPS Time is 
complete after this. 

510: This is also used for negative differences. dGPS Time (low) is read with instance 6. GPS time 
is calculated as previous GPS Time[reference frame] of the same context + ISum32(- 10 * 
delta[reference frame] of the same context, dGPS Time (low)). 

counter[reference frame] of the same context is increased by 1. If counter[reference frame] of 
the same context is > 3, delta[reference frame] of the same context is set to ISum32(- 10 * 
delta[reference frame] of the same context, dGPS Time (low)), and counter[reference frame] 
of the same context is set to 0. 

The GPS Time is complete after this, GPS Time (extra) is unused/skipped. 

511: The gps time is stored using both time fields. (Due to the ambiguity in interpreting the numbers, 
the data types are specified, as the integer compressor returns 32 bit signed integer values, and the 
gps time is a 64 bit floating point value treated as a 64 bit unsigned integer). First, the instance 8 (of 
the 32-bit Integer Compressor) for dGPS Time (low) and the RAW encoder for GPS Time (extra) 
are used to calculate (unsigned long long)tmp := (unsigned long long) ISum32( ((signed 
integer)((unsigned long long)previous GPS Time[reference frame] of the same context RIGHT 
SHIFT BY 32), dGPS Time (low)) ) LEFT SHIFT BY 32 + GPS Time (extra). 

Then the current reference frame is changed to the next reference frame in line (in the order 0, 1, 2, 
3, 0). GPS Time is then set to tmp. The previous GPS Time[reference frame] of the same 
context of the new current reference frame is now GPS Time, while previous GPS Time[] for the 
previous reference frame is unchanged. delta[reference frame] of the same context and 
delta[reference frame] of the same context are set to 0. 

The GPS Time is complete after this. 511 is only allowed to be the first entry in the GPS cases-
array. 

512..514: The current reference frame is changed to the 1st (512), 2nd (513) or 3rd (514) 
successor, in the order 0, 1, 2, 3, 0. Then, the next entry in the GPS cases array is evaluated. 
512..514 are only allowed to be the first entry in the GPS cases-array. previous GPS 
Time[reference frame] is not changed here. 
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case_0delta: 

Table 53 — Values for field “case_0delta”, Point14 

Value Description 

0 stored using just dGPS Time (low) 

1 starting a new reference frame (using both dGPS Time (low) and GPS Time (extra)) 

2-4 predicted with one of the other three reference frames 

The field case_0delta is a shorter version of the case-field, for cases where delta[reference 
frame] of the same context = 0 (so the multiplications for case 0 to 510 are not relevant). The 
instance numbers are the same as used for the case field. After processing a case, except 2..4, the 
previous GPS Time[reference frame] is set to the calculated GPS time. 

The cases are: 

0: dGPS Time (low) is read with instance 0, and GPS time := previous GPS Time[reference 
frame] of the same context + ISum32(0, dGPS Time (low)). delta[reference frame] of the same 
context is set to ISum32(0, dGPS Time (low)). (Note that this, and the instance number, differ from 
case = 1). 

counter[reference frame] of the same context is reset to 0. The GPS Time is complete after this, 
GPS Time (extra) is unused/skipped. 

1: Identical to case = 511 (stored using both dGPS Time (low) and GPS Time (extra)). 1 is only 
allowed to be the first entry in the GPS cases-array. 

2..4: Analogously to case = 512..514: The current reference frame is changed to the 1st (case = 2), 
2nd (3) or 3rd (4) successor, in the order 0, 1, 2, 3, 0. Then, the next entry in the cases array is 
evaluated. 2..4 are only allowed to be the first entry in the cases-array. previous GPS 
Time[reference frame] is not changed here. 

dGPS Time (low): Stored using a 32-bit Integer Compressor with 9 different instances. Usage is 
described above. Optional field. 

GPS Time (extra): Stored using a RAW Encoder with 32 bits. Only stored if the full gps time has to 
be stored (i.e. for case = 512 and case_0delta = 2). Usage is described above. 

14.2. RGB14 (version 3) 

The RGB14-item compresses the Red, Green and Blue-fields that are part of LAS Point Data 
Record Formats 7, 8 and 10. The format of the uncompressed item is as follows: 

Table 54 — RGB14-item format, uncompressed 

Field Name Format Size Required 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

The first entry per chunk is this uncompressed item. 

Details about the fields are described in Annex A. 
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The compressed item first stores a field that indicates which bytes are changed. The high and low 
bytes of the red, green and blue channel are treated separately. If they changed, only the difference 
to the corresponding value of the previous item is stored. 

As there is often a correlation between changes to the red, green, and blue channels (e.g. if the 
intensity for a gray color changes), the delta for the red channel is added to the green channel first, 
and only the difference to that is stored. For the blue channel, the average delta of the red and 
green channel is used. 

The item has 4 contexts, i.e. 4 sets of all instances (all initialized independently). The previous item 
used is always the previous item from the same context (i.e. there are 4 previous items). The initial 
item per context (that is set when the context is first used) is considered the previous item for the 
first item processed. 

The context is the context of the previously processed Point14-item. 

NOTE:  As described in Contexts, the “previous item of the same context” for the RGB14-
item has a non-obvious implementation, and specifically might refer to a different context after a 
context switch. 

The layer for this item can be empty, in which case all values of that layer are the same as the first 
(uncompressed) item for all items of that chunk. 

The algorithm clamp255() has been defined in Clause 13.3 for the RGB12-item. 

The compressed item is stored as follows (this is identical to the RGB12-item): 

Table 55 — RGB14-item format, compressed 

Field Name Type Size Encoder No of instances Required Layer 

Changed values bits 7 bits 128 Symbols 1 * 10 

dRed (low) byte 1 byte 256 Symbols 1  10 

dRed (high) byte 1 byte 256 Symbols 1  10 

dGreen (low) byte 1 byte 256 Symbols 1  10 

dGreen (high) byte 1 byte 256 Symbols 1  10 

dBlue (low) byte 1 byte 256 Symbols 1  10 

dBlue (high) byte 1 byte 256 Symbols 1  10 

Changed values: Indicates, which of the fields have been changed. Only changed fields are stored. 

Table 56 — Bit-values for field “Changed values”, RGB14 and RGBNIR14 

Bit Description 

0 Field dRed (low) is stored, otherwise dRed (low) is 0 

1 Field dRed (high) is present, otherwise dRed (high) is 0 

2 Field dGreen (low) is present, otherwise dGreen (low) is 0 

3 Field dGreen (high) is present, otherwise dGreen (high) is 0 

4 Field dBlue (low) is present, otherwise dBlue (low) is 0 

5 Field dBlue (high) is present, otherwise dBlue (high) is 0 

6 (Uncompressed) Green and Blue are identical to Red, bits 2-5 are ignored 

If bit 6 is set, Green and Blue are equal to the uncompressed value of Red (i.e. after processing 
dRed (low) and dRed (high)). In that case, bits 2 to 5 are ignored, the fields dGreen (low), dGreen 
(high), dBlue (low) and dBlue (high) are not stored, and the calculation described below for Green 
and Blue based on those fields is not used. 
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dRed (low): Only stored if bit 0 of Changed values is set, otherwise considered 0. Stores the delta 
to the lower bit of Red of the previous item (of the same context). Then, the sum is mapped to 
0..255 using modulo 256 and adding 256 if negative. I.e. lower byte of Red := (lower byte of Red 
(previous item of the same context) + dRed (low) + 256) MOD 256. 

dRed (high): Only stored if bit 1 of Changed values is set, otherwise considered 0. Stores the delta 
to the higher bit of Red of the previous item (of the same context). Then, the sum is mapped to 
0..255. I.e. higher byte of Red := (higher byte of Red (previous item of the same context) + 
dRed (high) + 256) MOD 256. 

Note: The remaining four fields are only used if bit 6 of Changed values is not set. 

dGreen (low): Only stored if bit 2 of Changed values is set (and bit 6 is not set), otherwise the 
lower byte of Green is the same as the lower byte of Green of the previous item (of the same 
context). If stored, the difference for the Red value is added first, and dGreen (low) stores only the 
difference to that. 

Calculate diff := lower byte of Red — lower byte of Red (previous item of the same context). 
This value is added to the previous value of the lower byte of Green, clamping to 255. Then, the 
total sum is mapped to 0..255. I.e. lower byte of Green := (dGreen (low) + clamp255(lower byte 
of Green (previous item of the same context) + diff) + 256) MOD 256. 

dGreen (high): Only stored if bit 3 of Changed values is set (and bit 6 is not set), otherwise the 
higher byte of Green is the same as the higher byte of Green of the previous item (of the same 
context). If stored, similar to dGreen (low), the difference for the Red value is calculated, clamped 
and added: 

Calculate diff := higher byte of Red — higher byte of Red (previous item of the same context). 
This value is added to the previous value of the higher byte of Green, clamping at 255. Then, the 
total sum is mapped to 0..255. I.e. higher byte of Green := (dGreen (low) + clamp255(higher byte 
of Green (previous item of the same context) + diff) + 256) MOD 256. 

dBlue (low): Only stored if bit 4 of Changed values is set (and bit 6 is not set), otherwise the lower 
byte of Blue is the same as the lower byte of Blue of the previous item (of the same context). If 
stored, the average difference for the Red and Green value is added first: 

Calculate diff := round_towards_0( (lower byte of Red — lower byte of Red (previous item of the 
same context) + lower byte of Green — lower byte of Green (previous item of the same 
context)) / 2 ), with round_towards_0() as defined in Conventions (i.e. rounding down above 0, and 
rounding up below 0). This is added and clamped. Then, the total sum is mapped to 0..255. That 
means, lower byte of Blue := (dBlue (low) + clamp255(lower byte of Blue (previous item of the 
same context) + diff) + 256) MOD 256. 

dBlue (high): Only stored if bit 5 of Changed values is set (and bit 6 is not set), otherwise the 
higher byte of Blue is the same as the higher byte of Blue of the previous item (of the same 
context). As for dBlue (low), the average difference for the Red and Green value is added first: 

Calculate diff := round_towards_0( (higher byte of Red — higher byte of Red (previous item of 
the same context) + higher byte of Green — higher byte of Green (previous item of the same 
context of the same context)) / 2 ). This is added and clamped. Then, the total sum is mapped to 
0..255. I.e. lower byte of Blue := (dBlue (low) + clamp255(higher byte of Blue (previous item of 
the same context) + diff) + 256) MOD 256. 
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14.3. RGBNIR14 (version 3) 

The RGBNIR14-item compresses the Red, Green, Blue and NIR (near infrared)-fields that are part 
of LAS Point Data Record Formats 8 and 10. The format of the uncompressed item is as follows: 

Table 57 — RGBNIR14-item format, uncompressed 

Field Name Format Size Required 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

NIR unsigned short 2 bytes * 

The first entry per chunk is this uncompressed item. 

Details about the fields are described in Annex A. 

The 3 RGB-fields are compressed in exactly the same way as the RGB14-item, and in their own 
layer. 

For the additional NIR-field, first, a field is stored that indicates if the high or low byte of the value 
has changed - the high and low bytes of the NIR-field are treated separately. If they changed, only 
the difference to the corresponding value of the previous item is stored. 

The item has 4 contexts, i.e. 4 sets of all instances (all initialized independently). The previous item 
used is always the previous item from the same context (i.e. there are 4 previous items). The initial 
item per context (that is set when the context is first used) is considered the previous item for the 
first item processed. 

The context is the context of the previously processed Point14-item. 

NOTE:  As described in Contexts, the “previous item of that context” for the RGBNIR14-item 
has a non-obvious implementation, and specifically might refer to a different context after a context 
switch. 

The fields Changed values NIR, dNIR (low) and dNIR (high) are in a separate layer stream from 
the other 7 fields. 

A layer can be empty, in which case all values of that layer are the same as the first 
(uncompressed) item for all items of that chunk. 

The compressed item is stored as follows: 

Table 58 — RGBNIR14-item format, compressed 

Field Name Type Size Encoder No of instances Required Layer 

Changed values bits 7 bits 128 Symbols 1 * 11 

dRed (low) byte 1 byte 256 Symbols 1  11 

dRed (high) byte 1 byte 256 Symbols 1  11 

dGreen (low) byte 1 byte 256 Symbols 1  11 

dGreen (high) byte 1 byte 256 Symbols 1  11 

dBlue (low) byte 1 byte 256 Symbols 1  11 

dBlue (high) byte 1 byte 256 Symbols 1  11 

Changed values NIR bits 2 bits 4 Symbols 1 * 12 

dNIR (low) byte 1 byte 256 Symbols 1  12 
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Field Name Type Size Encoder No of instances Required Layer 

dNIR (high) byte 1 byte 256 Symbols 1  12 

The fields Changed values, dRed (low), dRed (high), dGreen (low), dGreen (high), dBlue (low) 
and dBlue (high) are stored identically as the RGB14-item (and in their own layer), and are 
specified there. 

Changed values NIR: Indicates, which of the NIR-fields have been changed. Only changed fields 
are stored. 

Table 59 — Bit-values for field “Changed Values NIR”, RGBNIR14 

Bit Description 

0 Field dNIR (low) is stored, otherwise dNIR (low) is 0 

1 Field dNIR (high) is present, otherwise dNIR (high) is 0 

dNIR (low): Only stored if bit 0 of Changed values NIR is set, otherwise considered 0 for the 
following calculation. Stores the delta to the lower bit of NIR of the previous item (of the same 
context). The sum is then mapped to 0..255, i.e. mod 256 and adding 256 if negative. I.e. lower 
byte of NIR := (lower byte of NIR (previous item of the same context) AND 255 + dNIR (low) + 
256) MOD 256. 

dNIR (high): Only stored if bit 1 of Changed values NIR is set, otherwise considered 0. Stores the 
delta to the higher bit of NIR of the previous item (of the same context). The sum is then mapped to 
0..255, i.e. mod 256 and adding 256 if negative. I.e. higher byte of NIR := (higher byte of Red 
(previous item of the same context) + dNIR (high) + 256) MOD 256. 

14.4. BYTE14 (version 3) 

The BYTE14-item compresses any additional bytes that are optionally appended to LAS Point Data 
Record Formats 6 through 10. The number of bytes, n, is declared in the LAZ VLR, specified in 
Clause 7. The uncompressed item looks as: 

Table 60 — BYTE14-item format, uncompressed 

Field Name Format Size Required 

Bytes byte[n] n bytes * 

The first entry per chunk is this uncompressed item. 

LAZ compresses each byte separately and in its own layer, as given by the Byte14: bytes layer 
size in the layer table. 

The item has 4 contexts, e.g. specifically 4 sets of all instances (all initialized independently). The 
previous item used is always the previous item from the same context (so there are 4 previous 
items). The initial item per context (that is set when the context is first used) is considered the 
previous item for the first item processed. 

The context is the context of the previously processed Point14-item. 

NOTE:  As described in Contexts, the “previous item of that context” for the Byte14-item has 
a non-obvious implementation, and specifically might refer to a different context after a context 
switch. 

The compressed item is stored as follows: 
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Table 61 — BYTE14-item format, compressed 

Field Name Type Size Encoder No of instances Required Layer 

dBytes byte[n] n byte 256 Symbols n  14- 

dBytes: Array of n bytes, using a separate symbol encoder for each of the n bytes (each with 256 
symbols). Stores the difference to the corresponding byte of the previous item. The sum is then 
mapped to 0..255, i.e. mod 256 and adding 256 if negative. I.e. Bytes[i] := (Bytes[i] (previous item 
of the same context) + dBytes[i] + 256) mod 256. 

The layer for some byte[i] can be empty, in which case the i-th Byte-value is the same as the i-th 
Byte-value in the first (uncompressed) item for all items of that chunk. 

14.5. Wavepacket14 (version 3) 

The Wavepacket14-item compresses the Waveform data that is part of LAS Point Data Record 
Formats 9 and 10. The format of the uncompressed item is as follows: 

Table 62 — Wavepacket14-item format, uncompressed 

Field Name Format Size Required 

Wave Packet Descriptor Index unsigned char 1 byte * 

Byte Offset to Waveform Data unsigned long long 8 bytes * 

Waveform Packet Size in Bytes unsigned long 4 bytes * 

Return Point Waveform Location float 4 bytes * 

Parametric dx float 4 bytes * 

Parametric dy float 4 bytes * 

Parametric dz float 4 bytes * 

The first entry per chunk is this uncompressed item. 

Details about the fields are described in Annex A. 

All LAS floating point values are treated as signed 32-bit integer values, i.e. uses the byte 
representation of the floating point values as is. 

All fields except the Byte Offset to Waveform Data are stored in a straight forward way using the 
specified encoder. That offset-field however uses an additional 2-bit field that determines 4 cases: 
(0) the value is the same as the offset of the previous item (of the same context), (1) it just differs by 
the packet size of the previous item, (2) the difference is small enough to be stored with just 4 bytes, 
and (3) the full 8 byte value is stored. 

The item has 4 contexts, specifically 4 sets of all instances (all initialized independently). The 
previous item used is always the previous item from the same context (i.e. there are 4 previous 
items). The initial item per context (that is set when the context is first used) is considered the 
previous item for the first item processed. 

The context is the context of the previously processed Point14-item. 

NOTE:  As described in Contexts, the “previous item of that context” for the Wavepacket14-
item has a non-obvious implementation, and specifically might refer to a different context after a 
context switch. 

Except for those contexts, the format is identical to the Wavepacket13-item. Additionally, all fields 
are in the same layer. 



LAZ Specification 1.4 

 

 

 

 

 76 

The layer can be empty, in which case all values are the same as the first (uncompressed) item for 
all items of that chunk. 

The compressed item is stored as follows: 

Table 63 — Wavepacket14-item format, compressed 

Field Name Type Size Encoder 
No of 
instances 

Required Layer 

Wave Packet 
Descriptor Index 

byte 1 byte 256 Symbols 1 * 13 

Offset Diff Type bits 2 bits 4 Symbols 4 * 13 

dOffset Diff (low) long 4 bytes 
Integer Compressor, 
32 bits 

1  13 

Offset (full) 
long 
long 

8 bytes Raw, 64 bit 1  13 

dPacket Size long 4 bytes 
Integer Compressor, 
32 bits 

1 * 13 

dReturn Point long 4 bytes 
Integer Compressor, 
32 bits 

1 * 13 

dPdXYZ long[3] 
12 
bytes 

Integer Compressor, 
32 bits 

3 * 13 

Wave Packet Descriptor Index: Stored using a symbol encoder with 256 symbols. 

Offset Diff Type: Stored using a symbol encoder with 4 symbols, and 4 different instances. The 
instance is chosen by the value of Offset Diff Type of the previous item (of the same context), or 0 
for the first compressed item (as the uncompressed first item does not have this field). Encodes how 
Byte Offset to Waveform Data is compressed: 

0: Byte Offset to Waveform Data is the same as the value from the previous item (of the same 
context). dOffset Diff (low) and Offset (full) are not stored or used. 

1: The offset is increased by the packet size of the previous item, Byte Offset to Waveform Data := 
Byte Offset to Waveform Data (previous item of the same context) + Waveform Packet Size in 
Bytes (previous item of the same context). dOffset Diff (low) and Offset (full) are not stored. 

2: Byte Offset to Waveform Data can be encoded with just a small difference, called Offset Diff, to 
the previous item. Stored in dOffset Diff (low) is only the difference to the last value of Offset Diff 
of the same context used in this chunk (i.e. by the last item that had an Offset Diff Type of 2) or to 
0, if it has not been used yet. I.e. Byte Offset to Waveform Data := Byte Offset to Waveform 
Data (previous item of the same context) + ISum32(Offset Diff (previous item of the same 
context with Offset Diff Type of 2), dOffset Diff (low)). Note that Offset Diff is only used when 
Offset Diff Type is 2. Offset (full) is not stored for this Offset Diff Type. 

3: Byte Offset to Waveform Data is stored as the full 8 byte value in Offset (full), i.e. Byte Offset 
to Waveform Data := Offset (full). Offset Diff (low) is not stored. 

dOffset Diff (low): Only stored if Offset Diff Type is 2. Using a 32-bit Integer Compressor. Used as 
described above. 

Offset (full): Only stored if Offset Diff Type is 3. Using a Raw encoder with 64 bits, contains the full 
Byte Offset to Waveform Data value. 
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dPacket Size: Using a 32-bit Integer Compressor, stores the difference to the previous value of 
Waveform Packet Size in Bytes, i.e. Waveform Packet Size in Bytes := ISum32(Waveform 
Packet Size in Bytes (previous item of the same context), dPacket Size). 

dReturn Point: Using a 32-bit Integer Compressor, stores the difference to the previous value of 
Return Point, i.e. Return Point := ISum32(Return Point (previous item of the same context), 
dReturn Point). Note that the LAS floating point value Return Point Waveform Location is treated 
as a signed 32-bit integer value in this calculation. 

dPdXYZ: An array of 3 values, namely dPdx, dPdy and dPdz. Those store the difference to the 
Parametric dx, Parametric dx and Parametric dz values to those values of the previous item of 
the same context, where the floating point values are treated as signed long integer values, i.e. the 
difference is taken from and added to the 4-byte representation of the floating point value: 
Parametric dx (as signed 32 bit integer) := ISum32(Parametric dx (as signed 32 bit integer) 
(previous item of the same context), dPdx), and the same for Parametric dy and Parametric dz. 
Using a 32-bit Integer Compressor with 3 instances, one for each of dPdx, dPdy and dPdz. Note 
that this is not the same as storing the 3 fields using a separate 32-bit Integer Compressor for each, 
as they share the symbol encoders for k, as described in Clause 10.5. 
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15. LAZ Legacy information 

15.1. LAZ 1.2 and 1.3 formats 

This specification covers only the LAZ 1.4 format based on the current LAS 1.4 format. 

Just as an overview however, a legacy support with LAZ 1.2 and 1.3 headers, based on the LAS 1.2 
and 1.3 format, exists, that can encode older formats without converting them to LAS 1.4 first. The 
LAZ 1.2 and 1.3 formats are similar to LAZ 1.4, but are using the (slightly smaller) LAS 1.2 and 1.3 
format headers. 

All limitations of a LAS 1.2 or 1.3 format will also apply to the legacy LAZ 1.2 or 1.3 format, e.g. 

regarding EVLRs, the limit of 232 points, and so on. 

Also, LAS Point Data Record Formats 6 to 10 are not supported, so the LAZ items for those 
formats, as well as the features exclusive to those items (e.g. layered compression), cannot be 
used. 

Otherwise, the LAZ-specific encodings (with item version 2 for LAS Point Data Record Formats 0 to 
5) are unchanged, including the structure of the special LAZ VLR, the compressed data block and 
the compressors. 

Item version 1, except for Wavepacket13, is deprecated, and not covered in this standard. 

15.2. LAS 1.4 compatibility mode (Legacy information) 

15.2.1. Overview 

Setting the bit LAS 1.4 compatibility mode to 1 in the Options field of the LAZ Special VLR 
indicates that LAS Point Data Record Formats 6 through 10 have been stored as LAS Point Data 
Record Formats  0 through 5 (or rather their respective LAZ items), plus extra bytes that contain the 
additional data exclusive to formats 6 to 10. 

This mode can only be used if the LAZ header format uses the legacy LAZ 1.2 or 1.3 header (and 
point formats). 

These are not part of this specification, and information about this mode is only meant to provide a 
quick, informal overview. 

This mode can only be used if the number of points do not exceed 232 . 

The following chapters describe the mapping used between the formats. 

15.2.2. Mapping of Point14-item 

A Point14-item will be stored as a Point10-item and a GPStime11-item plus additional bytes: 

— The fields X, Y, Z, Intensity, User Data and Point Source ID are identical between those items, 
as well as the flags Scan Direction Flag and Edge of Flight Line.  

— The Point14-field GPS time field is stored as a GPStime11-item, the fields are identical.  
— The following 5 bytes are stored as Byte-items, behind potentially already existing extra bytes.  
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Table 64 — Point14-fields stored as extra bytes in LAS 1.4 compatibility mode 

Field Name Format Size Required 

Scan Angle short 2 bytes * 

internal 2 bits 2 bits (bits 0 — 1) * 

Scanner Channel 2 bits (bits 2 — 3) 2 bits * 

Classification Flags 4 bits (bits 4 — 7) 4 bits  

Classification unsigned char 1 byte * 

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

The LAS 1.2 and LAS 1.3 fields are not identical to these fields, e.g., the LAS 1.4 Return Number 
has 4 bits, while LAS 1.3 Return number only uses 3 bits. When storing the Point10-item from 
Point14-item-data, any reasonable transformation can be done (for example, if the Point14-item has 
a return number above 7, use 7 for the corresponding compatible Point10-item). 

This is, just as the compatibility mode in general, not specified in this specification. 

15.2.3. Mapping of RGB14-item 

The RGB14-item is stored as an RGB12-item, the fields are identical. 

15.2.4. Mapping of RGBNIR14-item 

The RGBNIR14-item is stored as an RGB12-item plus 2 extra Byte10-items. 

— The fields Red, Green, and Blue of the RGBNIR14-item are identical to the fields of the RGB12-
item.  

— The 2 bytes for the NIR-field of the RGBNIR14-item are stored as 2 extra Byte10-Bytes, 
appended after any existing bytes, and after the Point14 extra bytes.  

15.2.5. Mapping of Wavepacket14-item 

The Wavepacket14-item is stored as a Wavepacket13-item, the fields are identical. 

15.2.6. Mapping of Byte14-item 

The Byte14-items are stored as Byte-items, the fields are identical. 

15.2.7. Additional LAS Header fields 

Additional header fields from LAS Header 1.4 that are not part of the LAS 1.2 or LAS 1.3 header are 
stored as the payload of an additional VLR identified with the string “lascompatible” in the field User 
Id and the value 22204 in the field Record Id.  

Table 65 — Point14-fields stored as extra bytes in LAS 1.4 compatibility mode 

Field Name Format Size Required 

Version unsigned short 2 bytes * 

Compatible version unsigned short 2 bytes * 

Reserved unsigned long 4 bytes * 

Start of Waveform Data Packet Record unsigned long long 8 bytes * 

Start of First Extended Variable Length Record unsigned long long 8 bytes * 

Number of Extended Variable Length Records unsigned long 4 bytes * 

Number of Point Records unsigned long long 8 bytes * 
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Field Name Format Size Required 

Number of Points by Return unsigned long long[15] 120 bytes * 

Three LAZ-specific fields are used in this VLR, the remaining fields are taken from the original LAS 
1.4 header: 

Version: Version information. 

Compatible version: Shall be 3 

Reserved: Shall be 0. 
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Annex A 
(normative) 
APPENDIX: LAS Point Data Record Format 

A.1. Scope 

The (uncompressed) LAS Point Data Record Formats are defined in the LAS 1.4 specification. LAZ 
does not change their meaning or specification. For convenience and completeness, this chapter 
gives a slightly shortened version of the field description in the LAS 1.4 specification. 

A.2. LAS Point Data Record Format 0 

Point Data Record Format 0 contains the core 20 bytes that are shared by Point Data Record 
Formats 0 to 5. 

Table A.1 — LAS Point Data Record Format 0, compressed by LAZ item “Point10” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

X, Y, Z: The X, Y and Z values are stored as long integers. The X, Y, and Z values are used in 
conjunction with the scale values and the offset values to determine the coordinate for each point as 
described in the Public Header Block section. 

Intensity: The intensity value is the integer representation of the pulse return magnitude. This value 
is optional and system specific. However, it should always be included if available. If Intensity is not 
included, this value must be set to zero. 

Intensity, when included, is always normalized to a 16 bit, unsigned value by multiplying the value 
by 65,536/(intensity dynamic range of the sensor). For example, if the dynamic range of the sensor 
is 10 bits, the scaling value would be (65,536/1,024). This normalization is required to ensure that 
data from different sensors can be correctly merged. 

Please note that the following four fields (Return Number, Number of Returns, Scan Direction Flag 
and Edge of Flight Line) are bit fields within a single byte. 

Return Number: The Return Number is the pulse return number for a given output pulse. A given 
output laser pulse can have many returns, and they must be marked in sequence of return. The first 
return will have a Return Number of one, the second a Return Number of two, and so on up to five 
returns. The Return Number must be between 1 and the Number of Returns, inclusive. 
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Number of Returns (given pulse): The Number of Returns is the total number of returns for a 
given pulse. For example, a laser data point may be return two (Return Number) within a total 
number of five returns. 

Scan Direction Flag: The Scan Direction Flag denotes the direction at which the scanner mirror 
was traveling at the time of the output pulse. A bit value of 1 is a positive scan direction, and a bit 
value of 0 is a negative scan direction (where positive scan direction is a scan moving from the left 
side of the in-track direction to the right side and negative the opposite). 

Edge of Flight Line: The Edge of Flight Line data bit has a value of 1 only when the point is at the 
end of a scan. It is the last point on a given scan line before it changes direction or the mirror facet 
changes. 

Classification: This field represents the “class” attributes of a point. If a point has never been 
classified, this byte must be set to zero. The format for classification is a bit encoded field with the 
lower five bits used for the class and the three high bits used for flags. The bit definitions are listed 
in Table A.2 and the classification values in Table A.3. 

Table A.2 — Classification Bit Field Encoding for LAS Point Data Record types 0 to 5 

Bit Field Name Description 

0:4 Classification 
Standard ASPRS classification from 0 — 31 as defined in the classification table 
for legacy point formats (Table A.3) 

5 Synthetic 

If set, this point was created by a technique other than direct observation such 
as digitized from a photogrammetric stereo model or by traversing a waveform. 
Point attribute interpretation might differ from non-Synthetic points. Unused 
attributes must be set to the appropriate default value. 

6 KeyPpoint 
If set, this point is considered to be a model key-point and therefore generally 
should not be withheld in a thinning algorithm. 

7 Withheld 
If set, this point should not be included in processing (synonymous with 
Deleted). 

Note that bits 5, 6 and 7 are treated as flags and can be set or clear in any combination. For 
example, a point with bits 5 and 6 both set to one and the lower five bits set to 2 would be a ground 
point that had been Synthetically collected and marked as a model Key-Point. 

Table A.3 — SPRS Standard LIDAR Point Classes for LAS Point Data Record types 0 to 5 

Classification Value (bits 0:4) Meaning 

0 Created, never classified 

1 Unclassified 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Low Point (noise) 

8 Model Key-point (mass point) 

9 Water 

10 Reserved for ASPRS Definition 

11 Reserved for ASPRS Definition 

12 Overlap Points 

13-31 Reserved for ASPRS Definition 
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A note on Bit Fields — The LAS storage format is “Little Endian”. This means that multi-byte data 
fields are stored in memory from the least significant byte at the low address to the most significant 
byte at the high address. Bit fields are always interpreted as bit 0 set to 1 equals 1, bit 1 set to 1 
equals 2, bit 2 set to 1 equals 4 and so forth. 

Scan Angle Rank: The Scan Angle Rank is a signed one-byte integer with a valid range from -90 to 
+90. The Scan Angle Rank is the angle (rounded to the nearest integer in the absolute value sense) 
at which the laser point was output from the laser system including the roll of the aircraft. The scan 
angle is within 1 degree of accuracy from +90 to -90 degrees. The scan angle is an angle based on 
0 degrees being nadir, and -90 degrees to the left side of the aircraft in the direction of flight. 

User Data: This field may be used at the user’s discretion. 

Point Source ID: This value indicates the source from which this point originated. A source is 
typically defined as a grouping of temporally consistent data, such as a flight line or sortie number 
for airborne systems, a route number for mobile systems, or a setup identifier for static systems. 
Valid values for this field are 1 to 65,535 inclusive. Zero is reserved as a convenience to system 
implementers. 

A.3. LAS Point Data Record Format 1 

Point Data Record Format 1 is the same as Point Data Record Format 0 with the addition of GPS 
Time. 

Table A.4 — LAS Point Data Record Format 1, compressed by LAZ items “Point10” and 
“GPSTime11” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

GPS Time: The GPS Time is the double floating point time tag value at which the point was 
acquired. It is GPS Week Time if the Global Encoding low bit is clear and Adjusted Standard GPS 
Time if the Global Encoding low bit is set (Global Encoding in the Public Header Block description). 

A.4. LAS Point Data Record Format 2 

Point Data Record Format 2 is the same as Point Data Record Format 0 with the addition of three 
color channels. These fields are used when “colorizing” a LIDAR point using ancillary data, typically 
from a camera. 



LAZ Specification 1.4 

 

 

 

 

 84 

Table A.5 — LAS Point Data Record Format 2, compressed by LAZ items “Point10” and “RGB12” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

Red, Green, and Blue: The Red, Green, and Blue image channel values associated with this point. 

The Red, Green, Blue values should always be normalized to 16 bit values. For example, when 
encoding an 8 bit per channel pixel, multiply each channel value by 256 prior to storage in these 
fields. This normalization allows color values from different camera bit depths to be accurately 
merged. 

A.5. LAS Point Data Record Format 3 

Point Data Record Format 3 is the same as Point Data Record Format 2 with the addition of GPS 
Time. 

Table A.6 — LAS Point Data Record Format 3, compressed by LAZ items “Point10”, “GPSTime11” 
and “RGB12” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 
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A.6. LAS Point Data Record Format 4 

Point Data Record Format 4 adds Wave Packets to Point Data Record Format 1. 

Table A.7 — LAS Point Data Record Format 4, compressed by LAZ items “Point10”, “GPSTime11” 
and “Wavepacket13” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Wave Packet Descriptor Index unsigned char 1 byte * 

Byte Offset to Waveform Data unsigned long long 8 bytes * 

Waveform Packet Size in Bytes unsigned long 4 bytes * 

Return Point Waveform Location float 4 bytes * 

Parametric dx float 4 bytes * 

Parametric dy float 4 bytes * 

Parametric dz float 4 bytes * 

Wave Packet Descriptor Index: This value plus 99 is the Record ID of the Waveform Packet 
Descriptor and indicates the User Defined Record that describes the waveform packet associated 
with this Point Record. Up to 255 different User Defined Records which describe the waveform 
packet are supported. A value of zero indicates that there is no waveform data associated with this 
Point Record.  

Byte Offset to Waveform Data: The waveform packet data are stored in the LAS file in an 
Extended Variable Length Record or in an auxiliary *.wdp file. The Byte Offset represents the 
location of the start of this Point Record’s waveform packet within the waveform data variable length 
record (or external file) relative to the beginning of the Waveform Data Packets header. The 
absolute location of the beginning of this waveform packet relative to the beginning of the file is 
given by Start of Waveform Data Packet Record + Byte Offset to Waveform Data for waveform 
packets stored within the LAS file and Byte Offset to Waveform Data for data stored in an auxiliary 
*.wdp file. 

Waveform Packet Size in Bytes: The size, in bytes, of the waveform packet associated with this 
return. Note that each waveform can be of a different size (even those with the same Waveform 
Packet Descriptor index) due to packet compression. Also note that waveform packets can be 
located only via the Byte offset to Waveform Data value since there is no requirement that records 
be stored sequentially. 

Return Point location: The offset in picoseconds (10−12) from the arbitrary "anchor point" to the 
location within the waveform packet for this Point Record. 
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Parametric dx, dy, dz: These parameters define a parametric line equation for extrapolating points 

along the associated waveform. The position along the wave is given by X = X0 + t ⋅ dx , Y = Y0 + t ⋅
dy and Z = Z0 + t ⋅ dz , where where (X, Y, Z) is the spatial position of a derived point, (X0, Y0, Z0) is 
the position of the “anchor” point, and t is the time, in picoseconds, relative to the anchor point. 

The anchor point is an arbitrary location at the origin of the associated waveform — i.e. t = 0 at the 

anchor point — with coordinates defined by X0 = XP + L ⋅ dx , Y0 = YP + L ⋅ dy and Z0 = ZP + L ⋅ dz , 
where (XP, YP, ZP) is the Point Record’s transformed position (as a double) and L is this Point 
Record’s Return Point Waveform Location. 

The units of X, Y and Z are the units of the coordinate systems of the LAS data. If the coordinate 
system is geographic, the horizontal units are decimal degrees and the vertical units are meters. 

A.7. LAS Point Data Record Format 5 

Point Data Record Format 5 adds Wave Packets to Point Data Record Format 3. 

Table A.8 — LAS Point Data Record Format 5, compressed by LAZ Items “Point10”, “GPSTime11”, 
“RGB12” and “Wavepacket13” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 3 bits (bits 0 — 2) 3 bits * 

Number of Returns (given pulse) 3 bits (bits 3 — 5) 3 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

Scan Angle Rank (-90 to +90), Left side char 1 byte * 

User Data unsigned char 1 byte  

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

Wave Packet Descriptor Index unsigned char 1 byte * 

Byte Offset to Waveform Data unsigned long long 8 bytes * 

Waveform Packet Size in Bytes unsigned long 4 bytes * 

Return Point Waveform Location float 4 bytes * 

Parametric dx float 4 bytes * 

Parametric dy float 4 bytes * 

Parametric dz float 4 bytes * 

A.8. LAS Point Data Record Format 6 

Point Data Record Format 6 contains the core 30 bytes that are shared by Point Data Record 
Formats 6 to 10. The difference to the core 20 bytes of Point Data Record Formats 0 to 5 is that 
there are more bits for return numbers in order to support up to 15 returns, there are more bits for 
point classifications to support up to 256 classes, there is a higher precision scan angle (16 bits 
instead of 8), and the GPS time is mandatory. 
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Table A.9 — LAS Point Data Record Format 6, compressed by LAZ Item “Point14” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

Classification Flags 4 bits (bits 0 — 3) 4 bits  

Scanner Channel 2 bits (bits 4 — 5) 2 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

User Data unsigned char 1 byte  

Scan Angle short 2 bytes * 

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Note that the following five fields (Return Number, Number of Returns, Classification Flags, Scan 
Direction Flag and Edge of Flight Line) are bit fields, encoded into two bytes. 

Return Number: The Return Number is the pulse return number for a given output pulse. A given 
output laser pulse can have many returns, and they must be marked in sequence of return. The first 
return will have a Return Number of one, the second a Return Number of two, and so on up to 
fifteen returns. The Return Number must be between 1 and the Number of Returns, inclusive. 

Number of Returns (given pulse): The Number of Returns is the total number of returns for a 
given pulse. For example, a laser data point may be return two (Return Number) within a total 
number of up to fifteen returns. 

Classification Flags: Classification flags are used to indicate special characteristics associated 
with the point. The bit definitions are: 

Table A.10 — “Classification Flags” Bit Field Encoding for LAS Point Record types 6 to 10 

Bit 
Field 
Name 

Description 

0 Synthetic 

If set, this point was created by a technique other than direct observation such as 
digitized from a photogrammetric stereo model or by traversing a waveform. Point 
attribute interpretation might differ from non-Synthetic points. Unused attributes 
must be set to the appropriate default value. 

1 Key-Point 
If set, this point is considered to be a model key-point and therefore generally 
should not be withheld in a thinning algorithm. 

2 Withheld If set, this point should not be included in processing (synonymous with Deleted). 

3 Overlap 
If set, this point is within the overlap region of two or more swaths or takes. Setting 
this bit is not mandatory (unless required by a specification other than this 
document) but allows Classification of overlap points to be preserved. 

Note that these bits are treated as flags and can be set or cleared in any combination. For example, 
a point with bits 0 and 1 both set to one and the Classification field set to 2 would be a ground point 
that had been synthetically collected and marked as a model Key-Point. 
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Scanner Channel: Scanner Channel is used to indicate the channel (scanner head) of a multi-
channel system. Channel 0 is used for single scanner systems. Up to four channels are supported 
(0-3). 

Scan Direction Flag: The Scan Direction Flag denotes the direction at which the scanner mirror 
was traveling at the time of the output pulse. A bit value of 1 is a positive scan direction, and a bit 
value of 0 is a negative scan direction (where positive scan direction is a scan moving from the left 
side of the in-track direction to the right side and negative the opposite). 

Edge of Flight Line: The Edge of Flight Line data bit has a value of 1 only when the point is at the 
end of a scan. It is the last point on a given scan line before it changes direction or the mirror facet 
changes. 

Classification: Classification must adhere to the following standard: 

Table A.11 — SPRS Standard LIDAR Point Classes for LAS Point Data Record Formats 6 to 10 

Classification 
Value 

Meaning 

0 Created, never classified 

1 Unclassified 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Building 

7 Low Point (noise) 

8 Reserved 

9 Water 

10 Rail 

11 Road Surface 

12 Reserved 

13 Wire — Guard (Shield) 

14 Wire — Conductor (Phase) 

15 Transmission Tower 

16 Wire-structure Connector (e.g. Insulator) 

17 Bridge Deck 

18 High Noise 

19 Overhead Structure (e.g., conveyors, mining equipment, traffic lights) 

20 Ignored Ground (e.g., breakline proximity) 

21 Snow 

22 
Temporal Exclusion (Features excluded due to changes over time between 
data sources, e.g., water levels, landslides, permafrost) 

23-63 Reserved 

64-255 User definable 

Scan Angle: The Scan Angle is a signed short that represents the rotational position of the emitted 
laser pulse with respect to the vertical of the coordinate system of the data. Down in the data 
coordinate system is the 0.0 position. Each increment represents 0.006 degrees. Counter-Clockwise 
rotation, as viewed from the rear of the sensor, facing in the along-track (positive trajectory) 
direction, is positive. The maximum value in the positive sense is 30,000 (180 degrees which is up 
in the coordinate system of the data). The maximum value in the negative direction is -30,000 which 
is also directly up. 
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A.9. LAS Point Data Record Format 7 

Point Data Record Format 7 is the same as Point Data Record Format 6 with the addition of three 
RGB color channels. These fields are used when “colorizing” a LIDAR point using ancillary data, 
typically from a camera. 

Table A.12 — LAS Point Data Record Format 7, compressed by LAZ Items “Point14” and “RGB14” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

Classification Flags 4 bits (bits 0 — 3) 4 bits  

Scanner Channel 2 bits (bits 4 — 5) 2 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

User Data unsigned char 1 byte  

Scan Angle short 2 bytes * 

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

A.10. LAS Point Data Record Format 8 

Point Data Record Format 8 is the same as Point Data Record Format 7 with the addition of a NIR 
(near infrared) channel. 

Table A.13 — LAS Point Data Record Format 8, compressed by LAZ Items “Point14” and 
“RGBNIR14” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

Classification Flags 4 bits (bits 0 — 3) 4 bits  

Scanner Channel 2 bits (bits 4 — 5) 2 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

User Data unsigned char 1 byte  

Scan Angle short 2 bytes * 

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Red unsigned short 2 bytes * 
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Field Name Format Size Required 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

NIR unsigned short 2 bytes * 

NIR: The NIR (near infrared) channel value associated with this point. 

Note that Red, Green, Blue, and NIR values should always be normalized to 16 bit values. For 
example, when encoding an 8 bit per channel pixel, multiply each channel value by 256 prior to 
storage in these fields. This normalization allows color values from different camera bit depths to be 
accurately merged. 

A.11. LAS Point Data Record Format 9 

Point Data Record Format 9 adds Wave Packets to Point Data Record Format 6. 

Table A.14 — LAS Point Data Record Format 9, compressed by LAZ Items “Point14” and 
“Wavepacket14” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

Classification Flags 4 bits (bits 0 — 3) 4 bits  

Scanner Channel 2 bits (bits 4 — 5) 2 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

User Data unsigned char 1 byte  

Scan Angle short 2 bytes * 

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Wave Packet Descriptor Index unsigned char 1 byte * 

Byte Offset to Waveform Data unsigned long long 8 bytes * 

Waveform Packet Size in Bytes unsigned long 4 bytes * 

Return Point Waveform Location float 4 bytes * 

Parametric dx float 4 bytes * 

Parametric dy float 4 bytes * 

Parametric dz float 4 bytes * 

A.12. LAS Point Data Record Format 10 

Point Data Record Format 10 adds Wave Packets to Point Data Record Format 8. 

Table A.15 — LAS Point Data Record Format 10, compressed by LAZ Items “Point14”, “RGBNIR14” 
and “Wavepacket14” 

Field Name Format Size Required 

X long 4 bytes * 

Y long 4 bytes * 
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Field Name Format Size Required 

Z long 4 bytes * 

Intensity unsigned short 2 bytes  

Return Number 4 bits (bits 0 — 3) 4 bits * 

Number of Returns (given pulse) 4 bits (bits 4 — 7) 4 bits * 

Classification Flags 4 bits (bits 0 — 3) 4 bits  

Scanner Channel 2 bits (bits 4 — 5) 2 bits * 

Scan Direction Flag 1 bit (bit 6) 1 bit * 

Edge of Flight Line 1 bit (bit 7) 1 bit * 

Classification unsigned char 1 byte * 

User Data unsigned char 1 byte  

Scan Angle short 2 bytes * 

Point Source ID unsigned short 2 bytes * 

GPS Time double 8 bytes * 

Red unsigned short 2 bytes * 

Green unsigned short 2 bytes * 

Blue unsigned short 2 bytes * 

NIR unsigned short 2 bytes * 

Wave Packet Descriptor Index unsigned char 1 byte * 

Byte Offset to Waveform Data unsigned long long 8 bytes * 

Waveform Packet Size in Bytes unsigned long 4 bytes * 

Return Point Waveform Location float 4 bytes * 

Parametric dx float 4 bytes * 

Parametric dy float 4 bytes * 

Parametric dz float 4 bytes * 
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Annex B 
(informative) 
Revision History 

Table — Revision History 

Date Release Author 
Primary clauses 
modified 

Description 

2024-06-16 R0 
rapidlasso 
GmbH 

all initial version 

2024-10-27 R1 
rapidlasso 
GmbH 

10.5 
Typos (whole document), 
clarification on usage of Integer 
encoder 
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