lascopcindex¶
This tool creates a COPC *.laz file version 1.4 format 6, 7 or 8 for a given set of *.las or *.laz files. A COPC file is a LAZ 1.4 file that stores point data sorted and organized in a clustered octree. It contains a VLR that describes the octree organization of data that are stored in LAZ 1.4 chunks (https://copc.io/). When COPC index is present it will be used to speed up access to the relevant areas of the LAZ file whenever a spatial queries or depth queries of the type -inside_tile ll_x ll_y size -inside_circle center_x center_y radius -inside_rectangle min_x min_y max_x max_y (or simply -inside) -max_depth d -resolution r appears in the command line of any LAStools invocation. This acceleration is also available to users of the LASlib API. The LASreader class has four new functions called BOOL inside_tile(const F32 ll_x, const F32 ll_y, const F32 size); BOOL inside_circle(const F64 center_x, const F64 center_y, const F64 radius); BOOL inside_rectangle(const F64 min_x, const F64 min_y, const F64 max_x, const F64 max_y); BOOL inside_copc_depth(const U8 mode, const I32 depth, const F32 resolution); If any of these functions is called the LASreader will only return the points that fall inside the specified region or depth and use - when available - the spatial indexing information in the COPC EVLR.
Examples¶
lascopcindex64 in.las
creates a COPC file called ‘in.copc.laz’.
lascopcindex64 -i in.laz -o out.copc.laz
creates a COPC file called ‘out.copc.laz’.
lascopcindex64 -i *.las
converts all LAS files in the current folder into copc files. The COPC format is designed to store massive point clouds in a single file so this may not be the typical use case. See the next example for more details.
lascopcindex64 -merged -i *.laz -o out.copc.laz
creates a single COPC LAZ file by merging all input LAZ files, which has the potential to be massive in size. However, creating such a large file may put significant pressure on the memory (RAM) resources. The amount of memory required depends on the density and extent of the point clouds, as well as the spatial coherence of the points in the files. Here are the order of magnitudes for memory usage based on different scenarios:
For spatially coherent streams:
10 million points: approximately 500 MB
100 million points: approximately 2 GB
1 billion points: approximately 5 GB
For non-spatially coherent streams:
10 million points: approximately 800 MB
50 million points: approximately 7 GB
1 billion points: not tested
To mitigate the memory usage, there are options available to reduce the memory footprint. See -unordered, -tls and -ondisk examples.
lascopcindex64 -merged -i *.laz -o out.copc.laz -progress
building a massive COPC LAZ file is a time-consuming process. This option displays a progress bar.
lascopcindex64 -merged -i *.laz -o out.copc.laz -ft
If the point clouds are not in meters, users have the option to specify the units using either the default option “-m” (meters) or the “-ft” option (feet). Not providing the “-ft” option is not a significant issue, but if users choose to provide it, it might slightly improve the speed and memory usage. long/lat coordinates are not supported by the COPC standard.
lascopcindex64 -merged -i *.laz -o out.copc.laz -root_light
The root of the octree can be more or less populated with -root_light, -root_medium (default) or -root_dense
lascopcindex64 -merged -i *.laz -o out.copc.laz -root_light -keep_first
Make a COPC file from first return only with a lower density at each level of the octree.
lascopcindex64 -i in.laz -o tls.copc.laz -unordered
optimized algorithm for processing files that are not spatially coherent. It may be slightly slower but it offers the advantage of using at least to 2 times less memory compared to the standard algorithm. It is specifically designed for dense point clouds obtained from sources such as drone, terrestrial lidar, photogrammetry, and other non-spatially coherent acquisitions. Works only for a single input file.
lascopcindex64 -i tls.laz -tls
This is equivalent to -unordered -root_light. Additionally, the internal routine variation for computing the maximum depth of the octree is specifically tailored to handle terrestrial lidar data more effectively.
lascopcindex64 -merge -i *.laz -o out.copc.laz -ondisk
When sorting and clustering massive point clouds, it can exert a significant strain on the main memory (RAM). To alleviate this memory pressure, an option is available to store temporary data on disk, reducing the memory usage. By storing the data on disk, the memory usage can be reduced by 2 or more, although it may lead to an increase in processing time.
lascopcindex specific arguments¶
overview of all tool-specific switches:
-v -verbose : info reported in console -vv -very_verbose : more info reported in console -version : reports this tool’s version number -progress : displays a progress bar (disable with verbose) -depth [n] : set a maximum depth [n] for the octree instead of relying on internal inference. -m : set the units to meters (default) -ft : set the units to feets -root_light : low density for the root of the octree (128 cell divisions) -root_medium : medium density for the root of the octree (256 cell divisions) -root_dense : hight density for the root of the octree (512 cell divisions) -unordered : memory optimisation for dense files without a spatially coherent order -tls : use it for terrestrial lidar data. It includes -unordered and -root_light -ondisk : stores processing data on disk to save memory. -tmpdir : if ondisk is set, an optionnal path to a directory where to store temporary files.
Module arguments¶
Color¶
-clamp_RGB_to_8bit : limit RGB values to 8 bit (otherwise: 16 bit)
-copy_B_into_NIR : copy blue color value into NearInfraRed value
-copy_B_into_intensity : copy blue color value to intensity
-copy_B_into_register [n] : copy blue color value into register [n]
-copy_G_into_NIR : copy green color value into NearInfraRed value
-copy_G_into_intensity : copy green color value to intensity
-copy_G_into_register [n] : copy green color value into register [n]
-copy_NIR_into_intensity : copy NIR into intensity
-copy_NIR_into_register [n] : copy NearInfraRed value into register [n]
-copy_RGB_into_intensity : copy weighted RGB value to intensity
-copy_R_into_NIR : copy red color value into NearInfraRed value
-copy_R_into_intensity : copy red color value to intensity
-copy_R_into_register [n] : copy red color value into register [n]
-copy_attribute_into_B [n] : copy attribute [n] value into blue
-copy_attribute_into_G [n] : copy attribute [n] value into green
-copy_attribute_into_NIR [n] : copy attribute [n] value into NIR (NearInfraRed)
-copy_attribute_into_R [n] : copy attribute [n] value into red
-copy_intensity_into_NIR : copy intensity into NIR (NearInfraRed) value
-copy_register_into_B [n] : copy register [n] into blue color value
-copy_register_into_G [n] : copy register [n] into green color value
-copy_register_into_I [n] : copy register [n] into NearInfraRed value
-copy_register_into_NIR [n] : copy register [n] into NearInfraRed value
-copy_register_into_R [n] : copy register [n] into red color value
-drop_RGB_green [min] [max] : drop points with green color value between [min] and [max]
-drop_RGB_red [min] [max] : drop points with red color value between [min] and [max]
-force_RGB : force the use of the RGB value even if the point format does not support RGB
-keep_NDVI_from_CIR [min] [max] : keep NDVI (Normalized Difference Vegetation Index) from CIR between [min] [max]
-keep_NDVI_green_is_NIR [min] [max] : keep NDVI (Normalized Difference Vegetation Index) where green is NIR between [min] [max]
-keep_NDVI_intensity_is_NIR [min] [max]: keep NDVI (Normalized Difference Vegetation Index) where intensity is NIR between [min] [max]
-keep_RGB_blue [m] [n] : keep points with RGB blue color values between [min] [max]
-keep_RGB_green [min] [max] : keep points with green color value between [min] and [max]
-keep_RGB_greenness [m] [n] : keep points with RGB greenness values between [min] [max]
-keep_RGB_nir [m] [n] : keep points with RGB NIR values between [min] [max]
-keep_RGB_red [min] [max] : keep points with red color value between [min] and [max]
-map_attribute_into_RGB [a] [fnm] : map attribute [a] by table in file [fnm] to RGB values
-scale_NIR [n] : scale NearInfraRed value by factor [n]
-scale_NIR_down : scale NearInfraRed value down by 256
-scale_NIR_to_16bit : scale 8 bit NearInfraRed value to 16 bit
-scale_NIR_to_8bit : scale 16 bit NearInfraRed value downto 8 bit
-scale_NIR_up : scale NearInfraRed value up by 256
-scale_RGB [r] [g] [b] : scale RGB values by factors in [r][g][b]
-scale_RGB_down : scale RGB color values down by 256
-scale_RGB_to_16bit : scale 8 bit color values to 16 bit
-scale_RGB_to_8bit : scale 16 bit color values downto 8 bit
-scale_RGB_up : scale RGB values from 8 bit up to 16 bit (multiply with 256)
-scale_rgb_down : divides all RGB values by 256 (to go from 16 bit to 8 bit numbers)
-scale_rgb_up : multiplies all RGB values by 256 (to go from 8 bit to 16 bit numbers)
-set_NIR [n] : set NearInfraRed value to [n]
-set_RGB [r] [g] [b] : set color to [r] [g] [b]
-set_RGB_of_class [c] [r] [g] [b] : set RGB values of class [c] to [r][g][b] (8 or 16 bit)
-switch_RGBI_into_CIR : set R to NIR; G to R; B to G
-switch_RGB_intensity_into_CIR : set R to intensity; G to R; B to G
-switch_R_B : switch red and blue color value
-switch_R_G : switch red and green color value
Coordinates¶
-add_attribute_to_z [n] : add value of attribute [n] to z value
-add_scaled_attribute_to_z [m] [n] : scale attribute [m] value by [n] and add to z value
-auto_reoffset : puts a reasonable offset in the header and translates the points accordingly. Only applicable to LAS/LAZ input files
-bin_Z_into_point_source [n] : set point source to z/[n]
-clamp_raw_z [min] [max] : limit raw z values to [min] and [max]
-clamp_z [min] [max] : limit z values to [min] and [max]
-clamp_z_above [n] : limit z values to maximal [n]
-clamp_z_below [n] : limit z values to minimal [n]
-classify_z_above_as [m] [n] : for z value above [m] set class to [n]
-classify_z_below_as [m] [n] : for z value below [m] set class to [n]
-classify_z_between_as [m] [n] [o] : for z value between [m] and [n] set class to [o]
-copy_attribute_into_x [n] : copy attribute [n] value into x
-copy_attribute_into_y [n] : copy attribute [n] value into y
-copy_attribute_into_z [n] : copy attribute [n] value into z
-copy_intensity_into_z : copy intensity to z value
-copy_register_into_x [n] : copy register [n] to x value
-copy_register_into_y [n] : copy register [n] to y value
-copy_register_into_z [n] : copy register [n] to z value
-copy_user_data_into_z : copy user data into z
-copy_z_into_attribute [n] : copy z value into attribute [n] value
-drop_x [m] [n] : drop points with x value between [m] and [n]
-drop_x_above [n] : drop points with x value above [n]
-drop_x_below [n] : drop points with x value below [n]
-drop_xy [x1] [y1] [x2] [y2] : drop points within the [x1] [y1] [x2] [y2] rectangle
-drop_xyz [x1] [y1] [z1] [x2] [y2] [z2]: drop points within the given cube dimensions
-drop_y [m] [n] : drop points with y value between [m] and [n]
-drop_y_above [n] : drop points with y value above [n]
-drop_y_below [n] : drop points with y value below [n]
-drop_z [m] [n] : drop points with z value between [m] and [n]
-drop_z_above [n] : drop points with z value above [n]
-drop_z_below [n] : drop points with z value below [n]
-inside [x1] [y1] [x2] [y2] : use only points within the [x1] [y1] [x2] [y2] rectangle
-inside_circle [x] [y] [r] : keep circle at pos [x] [y] with radius [r]
-inside_rectangle [x1] [y1] [x2] [y2]: use only points within the [x1] [y1] [x2] [y2] rectangle
-inside_tile [m] [n] [o] : use only points inside tile at lower-left [x] [y] with size [s]
-keep_circle [x] [y] [r] : keep circle at pos [x] [y] with radius [r]
-keep_profile [x1] [y1] [x2] [y2] [w]: keep profile with [x1] [y1] [x2] [y2] [w]
-keep_tile [x] [y] [size] : keep tile at lower-left [x] [y] with size [s]
-keep_x [m] [n] : keep points with x value between [m] and [n]
-keep_xy [x1] [y1] [x2] [y2] : keep points within the [x1] [y1] [x2] [y2] rectangle
-keep_xyz [x1] [y1] [z1] [x2] [y2] [z2]: keep points within the given cube dimensions
-keep_y [m] [n] : keep points with y value between [m] and [n]
-keep_z [m] [n] : keep points with z value between [m] and [n]
-keep_z_above [n] : keep points with z value above [n]
-keep_z_below [n] : keep points with z value below [n]
-offset_adjust : adjusting the offset based on the results of point operations and transformations
-reoffset [x] [y] [z] : puts a new offset [x] [y] [z] into the header and translates the points accordingly
-rescale [x] [y] [z] : puts a new scale [x] [y] [z] into the header and rescales the points accordingly
-rescale_xy [x] [y] : rescale x y by [x] [y]
-rescale_z [z] : rescale z by [z]
-rotate_xy [a] [x] [y] : rotate points by [a] degrees, center at [x] [y]
-rotate_xz [a] [x] [z] : rotate points by [a] degrees, center at [x] [z]
-rotate_yz [a] [y] [z] : rotate points by [a] degrees, center at [y] [z]
-scale_x [n] : scale x value by [n]
-scale_xyz [m] [n] [o] : scale xyz values by [m] [n] [o]
-scale_y [n] : scale y value by [n]
-scale_z [n] : scale z value by [n]
-switch_x_y : exchange x and y value
-switch_x_z : exchange x and z value
-switch_y_z : exchange z and x value
-transform_affine [k,w,x,y] : transform by kcos(w)+ksin(w)+tx;kcos(w)+ksin(w)+ty - angle in second of arc
-transform_helmert [m] [n] [o] : do a helmert transformation with 3 or 7 comma separated parameters [n] …
-transform_matrix [r11,r12,r13] [r21,r22,r23] [r31,r32,r33] [tr1,tr2,tr3]: transform input using matrix [r11,r12,r13] [r21,r22,r23] [r31,r32,r33] [tr1,tr2,tr3]
-translate_raw_x [n] : translate raw x value by [n]
-translate_raw_xy_at_random [x] [y] : translate raw xy values by random and max offset of [x] [y]
-translate_raw_xyz [x] [y] [z] : translate raw coordinates by [x] [y] [z]
-translate_raw_y [n] : translate raw y value by [n]
-translate_raw_z [n] : translate raw z value by [n]
-translate_scale_translate_x [m] [n]: calculate x value as (x–[m])[n]+[m]
-translate_scale_translate_y [m] [n]: calculate y value as (y–[m])[n]+[m]
-translate_scale_translate_z [m] [n]: calculate z value as (z–[m])*[n]+[m]
-translate_then_scale_x [m] [n] : translate x value by [m] and scale by [n]
-translate_then_scale_y [m] [n] : translate y value by [m] and scale by [n]
-translate_then_scale_z [m] [n] : translate z value by [m] and scale by [n]
-translate_x [n] : translate y value by [n]
-translate_xyz [x] [y] [z] : translate point coordinates by [x] [y] [z]
-translate_y [n] : translate y value by [n]
-translate_z [n] : translate z value by [n]
Simple thinning¶
-drop_every_nth [n] : drop every [n]th point
-keep_every_nth [n] : keep every [n]th point
-keep_random_fraction [m] [n] : keep points by random fraction [m]{0-1}, optional seed [n]
-thin_points_with_time [n] : thin points with time, [n] = timespacing
-thin_pulses_with_time [n] : thin pulses with time, [n] = timespacing
-thin_with_grid [n] : thin points by min grid size of [n]
-thin_with_time [n] : thin pulses with time, [n] = timespacing
Return number¶
-change_extended_number_of_returns_from_to [m] [n]: change extended number of returns from [m] to [n]
-change_extended_return_number_from_to [m] [n]: change extended return number from [m] to [n]
-change_number_of_returns_from_to [m] [n]: change number of returns from [m] to [n]
-change_return_number_from_to [m] [n]: change return number from [m] to [n]
-drop_double : drop double returns
-drop_first : drop first return
-drop_first_of_many : drop first of many returns
-drop_last : drop last return
-drop_last_of_many : drop last of many returns
-drop_middle : drop middle returns
-drop_number_of_returns [n] : drop points with [n] number of returns
-drop_quadruple : drop quadruple returns
-drop_quintuple : drop quintuple returns
-drop_return [m] [n]… : drop points with return [m] [n]…
-drop_return_mask [n] : drop points with return mask [n]
-drop_second_last : drop points with second last return
-drop_single : drop points with single return
-drop_triple : drop points with triple return
-first_only : use first return only
-keep_double : keep double returns
-keep_first : keep first return
-keep_first_of_many : keep first of many returns
-keep_last : keep last return
-keep_last_of_many : keep last of many returns
-keep_middle : keep mittle returns
-keep_number_of_returns [n] : keep points with [n] number of returns
-keep_quadruple : keep quadruple returns
-keep_quintuple : keep quintuple returns
-keep_return [m] [n]… : keep points with return [m] [n]…
-keep_return_mask [n] : keep points with return mask [n]
-keep_second_last : keep points with second last return
-keep_single : keep points with single return
-keep_triple : keep points with triple return
-last_only : use last return only
-repair_zero_returns : sets return counts and number of returns that are zero to one
-set_extended_number_of_returns [n] : set extended number of returns to [n]
-set_extended_return_number [n] : set extended return number to [n]
-set_number_of_returns [n] : set number of returns to [n]
-set_return_number [n] : set return number to [n]
Scanline¶
-drop_scan_direction [n] : drop points with scan direction [n]
-faf : input files are flightlines. do NOT use this for tiled input
-faf_index [n] : set files are flightlines index [n]
-files_are_flightlines : input files are flightlines. do NOT use this for tiled input
-drop_edge_of_flight_line : drop points with “Edge of Flight Line” flag set
-keep_edge_of_flight_line : keep points with “Edge of Flight Line” flag set
-keep_scan_direction_change : keep points with changed scan direction flag
-set_edge_of_flight_line [0/1] : set “Edge of Flight Line” flag to [0/1]
-set_scan_direction_flag [0/1] : set scan direction flag to [0/1]
Scanner channel¶
-copy_scanner_channel_into_point_source: copy scanner channel into point_source
-copy_scanner_channel_into_user_data: copy scanner channel into user data
-copy_user_data_into_scanner_channel: copy user data into scanner channel
-drop_scanner_channel [n] : drop points with scanner channel [n]
-keep_scanner_channel [n] : keep points with scanner channel [n]
-merge_scanner_channel_into_point_source: merge scanner channel to point source
-set_extended_scanner_channel [n] : set extended scanner channel to [n]
-set_scanner_channel [n] : set scanner channel to [n]
-split_scanner_channel_from_point_source: split scanner channel from point source and save as extended scanner channel
Source ID¶
-apply_file_source_ID : copy file source ID to target
-bin_Z_into_point_source [n] : set point source to z/[n]
-bin_abs_scan_angle_into_point_source [n]: set point source to scan_angle/[n]
-bin_gps_time_into_point_source [n] : set point source to gps/[n]
-change_point_source_from_to [m] [n]: change point source from [m] to [n]
-copy_attribute_into_point_source [n]: copy attribute [n] value into point source
-copy_classification_into_point_source: copy classification to point source
-copy_point_source_into_register [n]: copy point source into register [n]
-copy_register_into_point_source [n]: copy register [n] to point source
-copy_scanner_channel_into_point_source: copy scanner channel into point_source
-copy_user_data_into_point_source : copy user data into point source
-drop_point_source [n] : drop points with point source [n]
-drop_point_source_above [n] : drop points with with point source above [n]
-drop_point_source_below [n] : drop points with with point source below [n]
-drop_point_source_between [m] [n] : drop points with with point source between [n] and [m]
-keep_point_source [n] : keep points with point source [n]
-keep_point_source_between [m] [n] : keep points with with point source between [n] and [m]
-map_point_source [fnm] : set the point source by map in file [fnm]
-merge_scanner_channel_into_point_source: merge scanner channel to point source
-set_point_source [n] : set point source to [n]
-split_scanner_channel_from_point_source: split scanner channel from point source and save as extended scanner channel
User data¶
-add_scaled_attribute_to_user_data [m] [n]: scale attribute [m] value by [n] and add to user data
-change_user_data_from_to [m] [n] : change user data from [m] to [n]
-copy_attribute_into_user_data [n] : copy attribute [n] value into user data field
-copy_classification_into_user_data : copy classification to user data
-copy_register_into_user_data [n] : copy register [n] to user data
-copy_scanner_channel_into_user_data: copy scanner channel into user data
-copy_user_data_into_attribute [n] : copy user data into attribute [n] value
-copy_user_data_into_classification : copy user data into classification
-copy_user_data_into_point_source : copy user data into point source
-copy_user_data_into_register [n] : copy user data to register [n]
-copy_user_data_into_scanner_channel: copy user data into scanner channel
-copy_user_data_into_z : copy user data into z
-drop_user_data [n] : drop points with user data value of [n]
-drop_user_data_above [n] : drop points with user data value above [n]
-drop_user_data_below [n] : drop points with user data value below [n]
-drop_user_data_between [m] [n] : drop points with user data between [m] and [n]
-keep_user_data [n] : keep points with user data value of [n]
-keep_user_data_above [n] : keep points with user data value above [n]
-keep_user_data_below [n] : keep points with user data value below [n]
-keep_user_data_between [m] [n] : keep points with user data between [m] and [n]
-map_user_data [fnm] : set the user data by map in file [fnm]
-scale_user_data [n] : scale user data by [n]
-set_user_data [n] : sets all user_data fields to [n]
Classification¶
-change_class_from_to [m] [n] : change classification from [m] to [n]
-change_classification_from_to [m] [n]: change classification from [m] to [n]
-change_extended_class_from_to [m] [n]: change extended class from [m] to [n]
-change_extended_classification_from_to [m] [n]: change extended class from [m] to [n]
-classify_attribute_above_as [m] [n] [o]: for attribute [m] with value above [n] set class to [o]
-classify_attribute_below_as [m] [n] [o]: for attribute [m] with value below [n] set class to [o]
-classify_attribute_between_as [m] [n] [o] [p]: for attribute [m] with value between [n] and [o] set class to [p]
-classify_intensity_above_as [m] [n]: for intensity value above [m] set class to [n]
-classify_intensity_below_as [m] [n]: for intensity value below [m] set class to [n]
-classify_intensity_between_as [m] [n] [o]: for intensity value between [m] and [n] set class to [o]
-classify_z_above_as [m] [n] : for z value above [m] set class to [n]
-classify_z_below_as [m] [n] : for z value below [m] set class to [n]
-classify_z_between_as [m] [n] [o] : for z value between [m] and [n] set class to [o]
-copy_classification_into_point_source: copy classification to point source
-copy_classification_into_user_data : copy classification to user data
-copy_intensity_into_classification : copy intensity to classification
-copy_user_data_into_classification : copy user data into classification
-drop_class [m] [n] [o]… : drop points with class in [m][n][o]…
-drop_classification [m] [n] [o]… : drop points with class in [m][n][o]…
-drop_classification_mask [n] : drop points with classification mask matches [n]
-drop_extended_class [m] [n]… : drop extended class [m] [n]…
-drop_extended_classification [n] : drop points with extended classification [n]
-drop_extended_classification_mask [a] [b] [c] [d] [e] [f] [g] [h]: drop points with extended classification mask matches [a] [b] [c] [d] [e] [f] [g] [h]
-keep_class [m] [n] [o]… : keep points with class in [m][n][o]…
-keep_classification [m] [n] [o]… : keep points with class in [m][n][o]…
-keep_classification_mask [n] : keep points with classification mask matches [n]
-keep_extended_class [m] [n]… : keep extended class [m] [n]…
-keep_extended_classification [n] : keep points with extended class [n]
-move_ancient_to_extended_classification: move old data to extended classification
-set_RGB_of_class [c] [r] [g] [b] : set RGB values of class [c] to [r][g][b] (8 or 16 bit)
-set_classification [n] : set classification to [n]
-set_extended_classification [n] : set extended classification to [n]
Extra byte¶
-add_attribute_to_z [n] : add value of attribute [n] to z value
-add_scaled_attribute_to_user_data [m] [n]: scale attribute [m] value by [n] and add to user data
-add_scaled_attribute_to_z [m] [n] : scale attribute [m] value by [n] and add to z value
-classify_attribute_above_as [m] [n] [o]: for attribute [m] with value above [n] set class to [o]
-classify_attribute_below_as [m] [n] [o]: for attribute [m] with value below [n] set class to [o]
-classify_attribute_between_as [m] [n] [o] [p]: for attribute [m] with value between [n] and [o] set class to [p]
-copy_attribute_into_B [n] : copy attribute [n] value into blue
-copy_attribute_into_G [n] : copy attribute [n] value into green
-copy_attribute_into_I [n] : copy attribute [n] value into intensity
-copy_attribute_into_NIR [n] : copy attribute [n] value into NIR (NearInfraRed)
-copy_attribute_into_R [n] : copy attribute [n] value into red
-copy_attribute_into_intensity [n] : copy attribute [n] value into intensity
-copy_attribute_into_point_source [n]: copy attribute [n] value into point source
-copy_attribute_into_register [m] [n]: copy attribute [m] value into register [m]
-copy_attribute_into_user_data [n] : copy attribute [n] value into user data field
-copy_attribute_into_x [n] : copy attribute [n] value into x
-copy_attribute_into_y [n] : copy attribute [n] value into y
-copy_attribute_into_z [n] : copy attribute [n] value into z
-copy_intensity_into_attribute [n] : copy intensity to attribute [n] value
-copy_register_into_attribute [m] [n]: copy register [m] to attribute [n] value
-copy_user_data_into_attribute [n] : copy user data into attribute [n] value
-copy_z_into_attribute [n] : copy z value into attribute [n] value
-drop_attribute_above [m] [n] : drop points with attribute [m] value > [n]
-drop_attribute_below [m] [n] : drop points with attribute [m] value < [n]
-drop_attribute_between [m] [n] [o] : drop points with attribute [m] in range [n]…[o]
-iadd_attribute [m] [n] [o] [p] [q] [r] [s] [t]: adds a new “extra_byte” attribute of data_type [m] name [n] description [o]; optional: scale[p] offset [q] pre_scale [r] pre_offset [s] no_data_value [t]
-iadd_extra [m] [n] [o] [p] [q] [r] [s] [t]: adds a new “extra_byte” attribute of data_type [m] name [n] description [o]; optional: scale[p] offset [q] pre_scale [r] pre_offset [s] no_data_value [t]
-keep_attribute_above [m] [n] : keep points with attribute [m] value > [n]
-keep_attribute_below [m] [n] : keep points with attribute [m] value < [n]
-keep_attribute_between [m] [n] [o] : keep points with attribute [m] in range [n]…[o]
-load_attribute_from_text [m] [fnt] : load attribute [m] from file [fnt]
-map_attribute_into_RGB [a] [fnm] : map attribute [a] by table in file [fnm] to RGB values
-scale_attribute [m] [n] : scale attribute [m] by [n]
-set_attribute [m] [n] : set attribute [m] with value [n]
-translate_attribute [m] [n] : translate attribute [n] by [n]
Flags¶
-drop_keypoint : drop points flaged as keypoint
-drop_overlap : drop points flaged as overlap
-drop_scan_direction [n] : drop points with scan direction [n]
-drop_synthetic : drop points flaged as synthetic
-drop_withheld : drop points flaged as withheld
-keep_edge_of_flight_line : keep points with “Edge of Flight Line” flag set
-keep_keypoint : keep points flaged as keypoint
-keep_overlap : keep points flaged as overlap
-keep_scan_direction_change : keep points with changed scan direction flag
-keep_synthetic : keep points flaged as synthetic
-keep_withheld : keep points flaged as withheld
-set_edge_of_flight_line [0/1] : set “Edge of Flight Line” flag to [0/1]
-set_extended_overlap_flag [0/1] : set extended overlap flag to [0/1]
-set_keypoint_flag [0/1] : set keypoint flag to [0/1]
-set_overlap_flag [0/1] : set overlap flag to [0/1]
-set_scan_direction_flag [0/1] : set scan direction flag to [0/1]
-set_synthetic_flag [0/1] : set synthetic flag to [0/1]
-set_withheld_flag [0/1] : set withheld flag to [0/1]
GPS time¶
-adjusted_to_week : converts time stamps from Adjusted Standard GPS to GPS week
-bin_gps_time_into_intensity [n] : set intensity time to gps/[n]
-bin_gps_time_into_point_source [n] : set point source to gps/[n]
-drop_gps_time_above [n] : drop points with GPS time above [n]
License¶
This tool is free to use.
Support¶
To get more information about a tool just goto the LAStools Google Group and enter the tool name in the search function. You will get plenty of samples to this tool.
To get further support see our rapidlasso service page
Check for latest updates at https://rapidlasso.de/category/blog/releases/
If you have any suggestions please let us (info@rapidlasso.de) know.